Description: Lemma for recex . (Contributed by Eric Schmidt, 23-May-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | recextlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | ax-icn | |
|
3 | mulcl | |
|
4 | 2 3 | mpan | |
5 | 4 | adantl | |
6 | subcl | |
|
7 | 4 6 | sylan2 | |
8 | 1 5 7 | adddird | |
9 | 1 1 5 | subdid | |
10 | 5 1 5 | subdid | |
11 | mulcom | |
|
12 | 4 11 | sylan2 | |
13 | ixi | |
|
14 | 13 | oveq1i | |
15 | mulcl | |
|
16 | 15 | mulm1d | |
17 | 14 16 | eqtr2id | |
18 | mul4 | |
|
19 | 2 2 18 | mpanl12 | |
20 | 17 19 | eqtrd | |
21 | 20 | anidms | |
22 | 21 | adantl | |
23 | 12 22 | oveq12d | |
24 | 10 23 | eqtr4d | |
25 | 9 24 | oveq12d | |
26 | mulcl | |
|
27 | 26 | anidms | |
28 | 27 | adantr | |
29 | mulcl | |
|
30 | 4 29 | sylan2 | |
31 | 15 | negcld | |
32 | 31 | anidms | |
33 | 32 | adantl | |
34 | 28 30 33 | npncand | |
35 | 15 | anidms | |
36 | subneg | |
|
37 | 27 35 36 | syl2an | |
38 | 34 37 | eqtrd | |
39 | 8 25 38 | 3eqtrd | |