Metamath Proof Explorer


Theorem recextlem1

Description: Lemma for recex . (Contributed by Eric Schmidt, 23-May-2007)

Ref Expression
Assertion recextlem1 ABA+iBAiB=AA+BB

Proof

Step Hyp Ref Expression
1 simpl ABA
2 ax-icn i
3 mulcl iBiB
4 2 3 mpan BiB
5 4 adantl ABiB
6 subcl AiBAiB
7 4 6 sylan2 ABAiB
8 1 5 7 adddird ABA+iBAiB=AAiB+iBAiB
9 1 1 5 subdid ABAAiB=AAAiB
10 5 1 5 subdid ABiBAiB=iBAiBiB
11 mulcom AiBAiB=iBA
12 4 11 sylan2 ABAiB=iBA
13 ixi ii=1
14 13 oveq1i iiBB=-1BB
15 mulcl BBBB
16 15 mulm1d BB-1BB=BB
17 14 16 eqtr2id BBBB=iiBB
18 mul4 iiBBiiBB=iBiB
19 2 2 18 mpanl12 BBiiBB=iBiB
20 17 19 eqtrd BBBB=iBiB
21 20 anidms BBB=iBiB
22 21 adantl ABBB=iBiB
23 12 22 oveq12d ABAiBBB=iBAiBiB
24 10 23 eqtr4d ABiBAiB=AiBBB
25 9 24 oveq12d ABAAiB+iBAiB=AAAiB+AiB-BB
26 mulcl AAAA
27 26 anidms AAA
28 27 adantr ABAA
29 mulcl AiBAiB
30 4 29 sylan2 ABAiB
31 15 negcld BBBB
32 31 anidms BBB
33 32 adantl ABBB
34 28 30 33 npncand ABAAAiB+AiB-BB=AABB
35 15 anidms BBB
36 subneg AABBAABB=AA+BB
37 27 35 36 syl2an ABAABB=AA+BB
38 34 37 eqtrd ABAAAiB+AiB-BB=AA+BB
39 8 25 38 3eqtrd ABA+iBAiB=AA+BB