Metamath Proof Explorer


Theorem recp1lt1

Description: Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005)

Ref Expression
Assertion recp1lt1 A0AA1+A<1

Proof

Step Hyp Ref Expression
1 ltp1 AA<A+1
2 recn AA
3 ax-1cn 1
4 addcom A1A+1=1+A
5 2 3 4 sylancl AA+1=1+A
6 1 5 breqtrd AA<1+A
7 6 adantr A0AA<1+A
8 2 adantr A0AA
9 1re 1
10 readdcl 1A1+A
11 9 10 mpan A1+A
12 11 adantr A0A1+A
13 12 recnd A0A1+A
14 0lt1 0<1
15 addgtge0 1A0<10A0<1+A
16 14 15 mpanr1 1A0A0<1+A
17 9 16 mpanl1 A0A0<1+A
18 17 gt0ne0d A0A1+A0
19 8 13 18 divcan1d A0AA1+A1+A=A
20 11 recnd A1+A
21 20 mullidd A11+A=1+A
22 21 adantr A0A11+A=1+A
23 7 19 22 3brtr4d A0AA1+A1+A<11+A
24 simpl A0AA
25 24 12 18 redivcld A0AA1+A
26 ltmul1 A1+A11+A0<1+AA1+A<1A1+A1+A<11+A
27 9 26 mp3an2 A1+A1+A0<1+AA1+A<1A1+A1+A<11+A
28 25 12 17 27 syl12anc A0AA1+A<1A1+A1+A<11+A
29 23 28 mpbird A0AA1+A<1