Metamath Proof Explorer


Theorem recvs

Description: The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021) (Proof shortened by SN, 23-Nov-2024)

Ref Expression
Hypothesis recvs.r R=ringLModfld
Assertion recvs RℂVec

Proof

Step Hyp Ref Expression
1 recvs.r R=ringLModfld
2 refld fldField
3 isfld fldFieldfldDivRingfldCRing
4 3 simprbi fldFieldfldCRing
5 4 crngringd fldFieldfldRing
6 rlmlmod fldRingringLModfldLMod
7 2 5 6 mp2b ringLModfldLMod
8 rlmsca fldFieldfld=ScalarringLModfld
9 2 8 ax-mp fld=ScalarringLModfld
10 df-refld fld=fld𝑠
11 9 10 eqtr3i ScalarringLModfld=fld𝑠
12 resubdrg SubRingfldfldDivRing
13 12 simpli SubRingfld
14 eqid ScalarringLModfld=ScalarringLModfld
15 14 isclmi ringLModfldLModScalarringLModfld=fld𝑠SubRingfldringLModfldCMod
16 7 11 13 15 mp3an ringLModfldCMod
17 12 simpri fldDivRing
18 rlmlvec fldDivRingringLModfldLVec
19 17 18 ax-mp ringLModfldLVec
20 16 19 elini ringLModfldCModLVec
21 df-cvs ℂVec=CModLVec
22 20 1 21 3eltr4i RℂVec