Metamath Proof Explorer


Theorem recvs

Description: The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021) (Proof shortened by SN, 23-Nov-2024)

Ref Expression
Hypothesis recvs.r R = ringLMod fld
Assertion recvs R ℂVec

Proof

Step Hyp Ref Expression
1 recvs.r R = ringLMod fld
2 refld fld Field
3 isfld fld Field fld DivRing fld CRing
4 3 simprbi fld Field fld CRing
5 4 crngringd fld Field fld Ring
6 rlmlmod fld Ring ringLMod fld LMod
7 2 5 6 mp2b ringLMod fld LMod
8 rlmsca fld Field fld = Scalar ringLMod fld
9 2 8 ax-mp fld = Scalar ringLMod fld
10 df-refld fld = fld 𝑠
11 9 10 eqtr3i Scalar ringLMod fld = fld 𝑠
12 resubdrg SubRing fld fld DivRing
13 12 simpli SubRing fld
14 eqid Scalar ringLMod fld = Scalar ringLMod fld
15 14 isclmi ringLMod fld LMod Scalar ringLMod fld = fld 𝑠 SubRing fld ringLMod fld CMod
16 7 11 13 15 mp3an ringLMod fld CMod
17 12 simpri fld DivRing
18 rlmlvec fld DivRing ringLMod fld LVec
19 17 18 ax-mp ringLMod fld LVec
20 16 19 elini ringLMod fld CMod LVec
21 df-cvs ℂVec = CMod LVec
22 20 1 21 3eltr4i R ℂVec