Metamath Proof Explorer


Theorem reldmtpos

Description: Necessary and sufficient condition for dom tpos F to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion reldmtpos ReldomtposF¬domF

Proof

Step Hyp Ref Expression
1 0ex V
2 1 eldm domFyFy
3 brtpos0 yVtposFyFy
4 3 elv tposFyFy
5 0nelrel0 ReldomtposF¬domtposF
6 vex yV
7 1 6 breldm tposFydomtposF
8 5 7 nsyl3 tposFy¬ReldomtposF
9 4 8 sylbir Fy¬ReldomtposF
10 9 exlimiv yFy¬ReldomtposF
11 2 10 sylbi domF¬ReldomtposF
12 11 con2i ReldomtposF¬domF
13 vex xV
14 13 eldm xdomtposFyxtposFy
15 relcnv ReldomF-1
16 df-rel ReldomF-1domF-1V×V
17 15 16 mpbi domF-1V×V
18 17 sseli xdomF-1xV×V
19 18 a1i ¬domFxtposFyxdomF-1xV×V
20 elsni xx=
21 20 breq1d xxtposFytposFy
22 1 6 breldm FydomF
23 22 pm2.24d Fy¬domFxV×V
24 4 23 sylbi tposFy¬domFxV×V
25 21 24 syl6bi xxtposFy¬domFxV×V
26 25 com3l xtposFy¬domFxxV×V
27 26 impcom ¬domFxtposFyxxV×V
28 brtpos2 yVxtposFyxdomF-1x-1Fy
29 6 28 ax-mp xtposFyxdomF-1x-1Fy
30 29 simplbi xtposFyxdomF-1
31 elun xdomF-1xdomF-1x
32 30 31 sylib xtposFyxdomF-1x
33 32 adantl ¬domFxtposFyxdomF-1x
34 19 27 33 mpjaod ¬domFxtposFyxV×V
35 34 ex ¬domFxtposFyxV×V
36 35 exlimdv ¬domFyxtposFyxV×V
37 14 36 biimtrid ¬domFxdomtposFxV×V
38 37 ssrdv ¬domFdomtposFV×V
39 df-rel ReldomtposFdomtposFV×V
40 38 39 sylibr ¬domFReldomtposF
41 12 40 impbii ReldomtposF¬domF