Description: Necessary and sufficient condition for dom tpos F to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | reldmtpos | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex | |
|
2 | 1 | eldm | |
3 | brtpos0 | |
|
4 | 3 | elv | |
5 | 0nelrel0 | |
|
6 | vex | |
|
7 | 1 6 | breldm | |
8 | 5 7 | nsyl3 | |
9 | 4 8 | sylbir | |
10 | 9 | exlimiv | |
11 | 2 10 | sylbi | |
12 | 11 | con2i | |
13 | vex | |
|
14 | 13 | eldm | |
15 | relcnv | |
|
16 | df-rel | |
|
17 | 15 16 | mpbi | |
18 | 17 | sseli | |
19 | 18 | a1i | |
20 | elsni | |
|
21 | 20 | breq1d | |
22 | 1 6 | breldm | |
23 | 22 | pm2.24d | |
24 | 4 23 | sylbi | |
25 | 21 24 | syl6bi | |
26 | 25 | com3l | |
27 | 26 | impcom | |
28 | brtpos2 | |
|
29 | 6 28 | ax-mp | |
30 | 29 | simplbi | |
31 | elun | |
|
32 | 30 31 | sylib | |
33 | 32 | adantl | |
34 | 19 27 33 | mpjaod | |
35 | 34 | ex | |
36 | 35 | exlimdv | |
37 | 14 36 | biimtrid | |
38 | 37 | ssrdv | |
39 | df-rel | |
|
40 | 38 39 | sylibr | |
41 | 12 40 | impbii | |