Description: Any power of any restriction of the identity relation is itself. (Contributed by RP, 12-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexpiidm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | eqeq1d | |
3 | 2 | imbi2d | |
4 | oveq2 | |
|
5 | 4 | eqeq1d | |
6 | 5 | imbi2d | |
7 | oveq2 | |
|
8 | 7 | eqeq1d | |
9 | 8 | imbi2d | |
10 | oveq2 | |
|
11 | 10 | eqeq1d | |
12 | 11 | imbi2d | |
13 | resiexg | |
|
14 | relexp0g | |
|
15 | 13 14 | syl | |
16 | dmresi | |
|
17 | rnresi | |
|
18 | 16 17 | uneq12i | |
19 | unidm | |
|
20 | 18 19 | eqtri | |
21 | 20 | reseq2i | |
22 | 15 21 | eqtrdi | |
23 | relres | |
|
24 | 23 | a1i | |
25 | simp3 | |
|
26 | 24 25 | relexpsucrd | |
27 | simp1 | |
|
28 | 27 | coeq1d | |
29 | coires1 | |
|
30 | residm | |
|
31 | 29 30 | eqtri | |
32 | 28 31 | eqtrdi | |
33 | 26 32 | eqtrd | |
34 | 33 | 3exp | |
35 | 34 | com13 | |
36 | 35 | a2d | |
37 | 3 6 9 12 22 36 | nn0ind | |
38 | 37 | impcom | |