Metamath Proof Explorer


Theorem relexpiidm

Description: Any power of any restriction of the identity relation is itself. (Contributed by RP, 12-Jun-2020)

Ref Expression
Assertion relexpiidm AVN0IArN=IA

Proof

Step Hyp Ref Expression
1 oveq2 x=0IArx=IAr0
2 1 eqeq1d x=0IArx=IAIAr0=IA
3 2 imbi2d x=0AVIArx=IAAVIAr0=IA
4 oveq2 x=yIArx=IAry
5 4 eqeq1d x=yIArx=IAIAry=IA
6 5 imbi2d x=yAVIArx=IAAVIAry=IA
7 oveq2 x=y+1IArx=IAry+1
8 7 eqeq1d x=y+1IArx=IAIAry+1=IA
9 8 imbi2d x=y+1AVIArx=IAAVIAry+1=IA
10 oveq2 x=NIArx=IArN
11 10 eqeq1d x=NIArx=IAIArN=IA
12 11 imbi2d x=NAVIArx=IAAVIArN=IA
13 resiexg AVIAV
14 relexp0g IAVIAr0=IdomIAranIA
15 13 14 syl AVIAr0=IdomIAranIA
16 dmresi domIA=A
17 rnresi ranIA=A
18 16 17 uneq12i domIAranIA=AA
19 unidm AA=A
20 18 19 eqtri domIAranIA=A
21 20 reseq2i IdomIAranIA=IA
22 15 21 eqtrdi AVIAr0=IA
23 relres RelIA
24 23 a1i IAry=IAAVy0RelIA
25 simp3 IAry=IAAVy0y0
26 24 25 relexpsucrd IAry=IAAVy0IAry+1=IAryIA
27 simp1 IAry=IAAVy0IAry=IA
28 27 coeq1d IAry=IAAVy0IAryIA=IAIA
29 coires1 IAIA=IAA
30 residm IAA=IA
31 29 30 eqtri IAIA=IA
32 28 31 eqtrdi IAry=IAAVy0IAryIA=IA
33 26 32 eqtrd IAry=IAAVy0IAry+1=IA
34 33 3exp IAry=IAAVy0IAry+1=IA
35 34 com13 y0AVIAry=IAIAry+1=IA
36 35 a2d y0AVIAry=IAAVIAry+1=IA
37 3 6 9 12 22 36 nn0ind N0AVIArN=IA
38 37 impcom AVN0IArN=IA