Metamath Proof Explorer


Theorem remulinvcom

Description: A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom . (Contributed by SN, 5-Feb-2024)

Ref Expression
Hypotheses remulinvcom.1 φ A
remulinvcom.2 φ B
remulinvcom.3 φ A B = 1
Assertion remulinvcom φ B A = 1

Proof

Step Hyp Ref Expression
1 remulinvcom.1 φ A
2 remulinvcom.2 φ B
3 remulinvcom.3 φ A B = 1
4 ax-1ne0 1 0
5 4 a1i φ 1 0
6 3 5 eqnetrd φ A B 0
7 simpr φ B = 0 B = 0
8 7 oveq2d φ B = 0 A B = A 0
9 1 adantr φ B = 0 A
10 remul01 A A 0 = 0
11 9 10 syl φ B = 0 A 0 = 0
12 8 11 eqtrd φ B = 0 A B = 0
13 6 12 mteqand φ B 0
14 ax-rrecex B B 0 x B x = 1
15 2 13 14 syl2anc φ x B x = 1
16 simprl φ x B x = 1 x
17 simprr φ x B x = 1 B x = 1
18 4 a1i φ x B x = 1 1 0
19 17 18 eqnetrd φ x B x = 1 B x 0
20 simpr φ x B x = 1 x = 0 x = 0
21 20 oveq2d φ x B x = 1 x = 0 B x = B 0
22 2 ad2antrr φ x B x = 1 x = 0 B
23 remul01 B B 0 = 0
24 22 23 syl φ x B x = 1 x = 0 B 0 = 0
25 21 24 eqtrd φ x B x = 1 x = 0 B x = 0
26 19 25 mteqand φ x B x = 1 x 0
27 ax-rrecex x x 0 y x y = 1
28 16 26 27 syl2anc φ x B x = 1 y x y = 1
29 simplrr φ x B x = 1 y x y = 1 B x = 1
30 29 oveq2d φ x B x = 1 y x y = 1 A B x = A 1
31 30 oveq1d φ x B x = 1 y x y = 1 A B x y = A 1 y
32 1 ad2antrr φ x B x = 1 y x y = 1 A
33 2 ad2antrr φ x B x = 1 y x y = 1 B
34 32 33 remulcld φ x B x = 1 y x y = 1 A B
35 34 recnd φ x B x = 1 y x y = 1 A B
36 simplrl φ x B x = 1 y x y = 1 x
37 36 recnd φ x B x = 1 y x y = 1 x
38 simprl φ x B x = 1 y x y = 1 y
39 38 recnd φ x B x = 1 y x y = 1 y
40 35 37 39 mulassd φ x B x = 1 y x y = 1 A B x y = A B x y
41 32 recnd φ x B x = 1 y x y = 1 A
42 33 recnd φ x B x = 1 y x y = 1 B
43 41 42 37 mulassd φ x B x = 1 y x y = 1 A B x = A B x
44 43 oveq1d φ x B x = 1 y x y = 1 A B x y = A B x y
45 3 ad2antrr φ x B x = 1 y x y = 1 A B = 1
46 simprr φ x B x = 1 y x y = 1 x y = 1
47 45 46 oveq12d φ x B x = 1 y x y = 1 A B x y = 1 1
48 1t1e1ALT 1 1 = 1
49 47 48 syl6eq φ x B x = 1 y x y = 1 A B x y = 1
50 40 44 49 3eqtr3d φ x B x = 1 y x y = 1 A B x y = 1
51 ax-1rid A A 1 = A
52 32 51 syl φ x B x = 1 y x y = 1 A 1 = A
53 52 oveq1d φ x B x = 1 y x y = 1 A 1 y = A y
54 31 50 53 3eqtr3rd φ x B x = 1 y x y = 1 A y = 1
55 54 46 eqtr4d φ x B x = 1 y x y = 1 A y = x y
56 4 a1i φ x B x = 1 y x y = 1 1 0
57 46 56 eqnetrd φ x B x = 1 y x y = 1 x y 0
58 simpr φ x B x = 1 y x y = 1 y = 0 y = 0
59 58 oveq2d φ x B x = 1 y x y = 1 y = 0 x y = x 0
60 36 adantr φ x B x = 1 y x y = 1 y = 0 x
61 remul01 x x 0 = 0
62 60 61 syl φ x B x = 1 y x y = 1 y = 0 x 0 = 0
63 59 62 eqtrd φ x B x = 1 y x y = 1 y = 0 x y = 0
64 57 63 mteqand φ x B x = 1 y x y = 1 y 0
65 32 36 38 64 remulcan2d φ x B x = 1 y x y = 1 A y = x y A = x
66 55 65 mpbid φ x B x = 1 y x y = 1 A = x
67 simpr φ x B x = 1 y x y = 1 A = x A = x
68 67 oveq2d φ x B x = 1 y x y = 1 A = x B A = B x
69 17 ad2antrr φ x B x = 1 y x y = 1 A = x B x = 1
70 68 69 eqtrd φ x B x = 1 y x y = 1 A = x B A = 1
71 66 70 mpdan φ x B x = 1 y x y = 1 B A = 1
72 28 71 rexlimddv φ x B x = 1 B A = 1
73 15 72 rexlimddv φ B A = 1