Metamath Proof Explorer


Theorem ressply1sub

Description: A restricted polynomial algebra has the same subtraction operation. (Contributed by Thierry Arnoux, 30-Jan-2025)

Ref Expression
Hypotheses ressply.1 S=Poly1R
ressply.2 H=R𝑠T
ressply.3 U=Poly1H
ressply.4 B=BaseU
ressply.5 φTSubRingR
ressply1.1 P=S𝑠B
ressply1sub.1 φXB
ressply1sub.2 φYB
Assertion ressply1sub φX-UY=X-PY

Proof

Step Hyp Ref Expression
1 ressply.1 S=Poly1R
2 ressply.2 H=R𝑠T
3 ressply.3 U=Poly1H
4 ressply.4 B=BaseU
5 ressply.5 φTSubRingR
6 ressply1.1 P=S𝑠B
7 ressply1sub.1 φXB
8 ressply1sub.2 φYB
9 1 2 3 4 5 6 8 ressply1invg φinvgUY=invgPY
10 9 oveq2d φX+UinvgUY=X+UinvgPY
11 1 2 3 4 subrgply1 TSubRingRBSubRingS
12 subrgsubg BSubRingSBSubGrpS
13 5 11 12 3syl φBSubGrpS
14 6 subggrp BSubGrpSPGrp
15 13 14 syl φPGrp
16 1 2 3 4 5 6 ressply1bas φB=BaseP
17 8 16 eleqtrd φYBaseP
18 eqid BaseP=BaseP
19 eqid invgP=invgP
20 18 19 grpinvcl PGrpYBasePinvgPYBaseP
21 15 17 20 syl2anc φinvgPYBaseP
22 21 16 eleqtrrd φinvgPYB
23 7 22 jca φXBinvgPYB
24 1 2 3 4 5 6 ressply1add φXBinvgPYBX+UinvgPY=X+PinvgPY
25 23 24 mpdan φX+UinvgPY=X+PinvgPY
26 10 25 eqtrd φX+UinvgUY=X+PinvgPY
27 eqid +U=+U
28 eqid invgU=invgU
29 eqid -U=-U
30 4 27 28 29 grpsubval XBYBX-UY=X+UinvgUY
31 7 8 30 syl2anc φX-UY=X+UinvgUY
32 7 16 eleqtrd φXBaseP
33 eqid +P=+P
34 eqid -P=-P
35 18 33 19 34 grpsubval XBasePYBasePX-PY=X+PinvgPY
36 32 17 35 syl2anc φX-PY=X+PinvgPY
37 26 31 36 3eqtr4d φX-UY=X-PY