Description: Lemma for reusv2 . (Contributed by NM, 14-Dec-2012) (Proof shortened by Mario Carneiro, 19-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | reusv2lem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | nfv | |
|
3 | nfeu1 | |
|
4 | 2 3 | nfan | |
5 | euex | |
|
6 | rexn0 | |
|
7 | 6 | exlimiv | |
8 | r19.2z | |
|
9 | 8 | ex | |
10 | 5 7 9 | 3syl | |
11 | 10 | adantl | |
12 | nfra1 | |
|
13 | nfre1 | |
|
14 | 13 | nfeuw | |
15 | 12 14 | nfan | |
16 | rsp | |
|
17 | 16 | impcom | |
18 | isset | |
|
19 | 17 18 | sylib | |
20 | 19 | adantrr | |
21 | rspe | |
|
22 | 21 | ex | |
23 | 22 | ancrd | |
24 | 23 | eximdv | |
25 | 24 | imp | |
26 | 20 25 | syldan | |
27 | eupick | |
|
28 | 1 26 27 | syl2an2 | |
29 | 28 | ex | |
30 | 29 | com3l | |
31 | 15 13 30 | ralrimd | |
32 | 11 31 | impbid | |
33 | 4 32 | eubid | |
34 | 1 33 | mpbird | |
35 | 34 | ex | |
36 | reusv2lem2 | |
|
37 | 35 36 | impbid1 | |