Metamath Proof Explorer


Theorem rexdiv

Description: The extended real division operation when both arguments are real. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Assertion rexdiv A B B 0 A ÷ 𝑒 B = A B

Proof

Step Hyp Ref Expression
1 redivcl A B B 0 A B
2 recn A A
3 recn B B
4 id B 0 B 0
5 2 3 4 3anim123i A B B 0 A B B 0
6 divcan2 A B B 0 B A B = A
7 5 6 syl A B B 0 B A B = A
8 oveq2 x = A B B x = B A B
9 8 eqeq1d x = A B B x = A B A B = A
10 9 rspcev A B B A B = A x B x = A
11 1 7 10 syl2anc A B B 0 x B x = A
12 receu A B B 0 ∃! x B x = A
13 5 12 syl A B B 0 ∃! x B x = A
14 ax-resscn
15 id B x = A B x = A
16 15 rgenw x B x = A B x = A
17 riotass2 x B x = A B x = A x B x = A ∃! x B x = A ι x | B x = A = ι x | B x = A
18 14 16 17 mpanl12 x B x = A ∃! x B x = A ι x | B x = A = ι x | B x = A
19 11 13 18 syl2anc A B B 0 ι x | B x = A = ι x | B x = A
20 rexr A A *
21 xdivval A * B B 0 A ÷ 𝑒 B = ι x * | B 𝑒 x = A
22 20 21 syl3an1 A B B 0 A ÷ 𝑒 B = ι x * | B 𝑒 x = A
23 ressxr *
24 23 a1i A B B 0 *
25 rexmul B x B 𝑒 x = B x
26 25 eqeq1d B x B 𝑒 x = A B x = A
27 26 biimprd B x B x = A B 𝑒 x = A
28 27 ralrimiva B x B x = A B 𝑒 x = A
29 28 3ad2ant2 A B B 0 x B x = A B 𝑒 x = A
30 xreceu A * B B 0 ∃! x * B 𝑒 x = A
31 20 30 syl3an1 A B B 0 ∃! x * B 𝑒 x = A
32 riotass2 * x B x = A B 𝑒 x = A x B x = A ∃! x * B 𝑒 x = A ι x | B x = A = ι x * | B 𝑒 x = A
33 24 29 11 31 32 syl22anc A B B 0 ι x | B x = A = ι x * | B 𝑒 x = A
34 22 33 eqtr4d A B B 0 A ÷ 𝑒 B = ι x | B x = A
35 divval A B B 0 A B = ι x | B x = A
36 5 35 syl A B B 0 A B = ι x | B x = A
37 19 34 36 3eqtr4d A B B 0 A ÷ 𝑒 B = A B