Metamath Proof Explorer


Theorem rgspncl

Description: The ring-span of a set is a subring. (Contributed by Stefan O'Rear, 7-Dec-2014)

Ref Expression
Hypotheses rgspnval.r φ R Ring
rgspnval.b φ B = Base R
rgspnval.ss φ A B
rgspnval.n φ N = RingSpan R
rgspnval.sp φ U = N A
Assertion rgspncl φ U SubRing R

Proof

Step Hyp Ref Expression
1 rgspnval.r φ R Ring
2 rgspnval.b φ B = Base R
3 rgspnval.ss φ A B
4 rgspnval.n φ N = RingSpan R
5 rgspnval.sp φ U = N A
6 1 2 3 4 5 rgspnval φ U = t SubRing R | A t
7 ssrab2 t SubRing R | A t SubRing R
8 eqid Base R = Base R
9 8 subrgid R Ring Base R SubRing R
10 1 9 syl φ Base R SubRing R
11 2 10 eqeltrd φ B SubRing R
12 sseq2 t = B A t A B
13 12 rspcev B SubRing R A B t SubRing R A t
14 11 3 13 syl2anc φ t SubRing R A t
15 rabn0 t SubRing R | A t t SubRing R A t
16 14 15 sylibr φ t SubRing R | A t
17 subrgint t SubRing R | A t SubRing R t SubRing R | A t t SubRing R | A t SubRing R
18 7 16 17 sylancr φ t SubRing R | A t SubRing R
19 6 18 eqeltrd φ U SubRing R