Metamath Proof Explorer


Theorem rhmima

Description: The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion rhmima FMRingHomNXSubRingMFXSubRingN

Proof

Step Hyp Ref Expression
1 rhmghm FMRingHomNFMGrpHomN
2 subrgsubg XSubRingMXSubGrpM
3 ghmima FMGrpHomNXSubGrpMFXSubGrpN
4 1 2 3 syl2an FMRingHomNXSubRingMFXSubGrpN
5 eqid mulGrpM=mulGrpM
6 eqid mulGrpN=mulGrpN
7 5 6 rhmmhm FMRingHomNFmulGrpMMndHommulGrpN
8 5 subrgsubm XSubRingMXSubMndmulGrpM
9 mhmima FmulGrpMMndHommulGrpNXSubMndmulGrpMFXSubMndmulGrpN
10 7 8 9 syl2an FMRingHomNXSubRingMFXSubMndmulGrpN
11 rhmrcl2 FMRingHomNNRing
12 11 adantr FMRingHomNXSubRingMNRing
13 6 issubrg3 NRingFXSubRingNFXSubGrpNFXSubMndmulGrpN
14 12 13 syl FMRingHomNXSubRingMFXSubRingNFXSubGrpNFXSubMndmulGrpN
15 4 10 14 mpbir2and FMRingHomNXSubRingMFXSubRingN