Metamath Proof Explorer


Theorem ringcvalALTV

Description: Value of the category of rings (in a universe). (Contributed by AV, 13-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcvalALTV.c C=RingCatALTVU
ringcvalALTV.u φUV
ringcvalALTV.b φB=URing
ringcvalALTV.h φH=xB,yBxRingHomy
ringcvalALTV.o φ·˙=vB×B,zBg2ndvRingHomz,f1stvRingHom2ndvgf
Assertion ringcvalALTV φC=BasendxBHomndxHcompndx·˙

Proof

Step Hyp Ref Expression
1 ringcvalALTV.c C=RingCatALTVU
2 ringcvalALTV.u φUV
3 ringcvalALTV.b φB=URing
4 ringcvalALTV.h φH=xB,yBxRingHomy
5 ringcvalALTV.o φ·˙=vB×B,zBg2ndvRingHomz,f1stvRingHom2ndvgf
6 df-ringcALTV RingCatALTV=uVuRing/bBasendxbHomndxxb,ybxRingHomycompndxvb×b,zbg2ndvRingHomz,f1stvRingHom2ndvgf
7 6 a1i φRingCatALTV=uVuRing/bBasendxbHomndxxb,ybxRingHomycompndxvb×b,zbg2ndvRingHomz,f1stvRingHom2ndvgf
8 vex uV
9 8 inex1 uRingV
10 9 a1i φu=UuRingV
11 ineq1 u=UuRing=URing
12 11 adantl φu=UuRing=URing
13 3 adantr φu=UB=URing
14 12 13 eqtr4d φu=UuRing=B
15 simpr φu=Ub=Bb=B
16 15 opeq2d φu=Ub=BBasendxb=BasendxB
17 eqidd φu=Ub=BxRingHomy=xRingHomy
18 15 15 17 mpoeq123dv φu=Ub=Bxb,ybxRingHomy=xB,yBxRingHomy
19 4 ad2antrr φu=Ub=BH=xB,yBxRingHomy
20 18 19 eqtr4d φu=Ub=Bxb,ybxRingHomy=H
21 20 opeq2d φu=Ub=BHomndxxb,ybxRingHomy=HomndxH
22 15 sqxpeqd φu=Ub=Bb×b=B×B
23 eqidd φu=Ub=Bg2ndvRingHomz,f1stvRingHom2ndvgf=g2ndvRingHomz,f1stvRingHom2ndvgf
24 22 15 23 mpoeq123dv φu=Ub=Bvb×b,zbg2ndvRingHomz,f1stvRingHom2ndvgf=vB×B,zBg2ndvRingHomz,f1stvRingHom2ndvgf
25 5 ad2antrr φu=Ub=B·˙=vB×B,zBg2ndvRingHomz,f1stvRingHom2ndvgf
26 24 25 eqtr4d φu=Ub=Bvb×b,zbg2ndvRingHomz,f1stvRingHom2ndvgf=·˙
27 26 opeq2d φu=Ub=Bcompndxvb×b,zbg2ndvRingHomz,f1stvRingHom2ndvgf=compndx·˙
28 16 21 27 tpeq123d φu=Ub=BBasendxbHomndxxb,ybxRingHomycompndxvb×b,zbg2ndvRingHomz,f1stvRingHom2ndvgf=BasendxBHomndxHcompndx·˙
29 10 14 28 csbied2 φu=UuRing/bBasendxbHomndxxb,ybxRingHomycompndxvb×b,zbg2ndvRingHomz,f1stvRingHom2ndvgf=BasendxBHomndxHcompndx·˙
30 elex UVUV
31 2 30 syl φUV
32 tpex BasendxBHomndxHcompndx·˙V
33 32 a1i φBasendxBHomndxHcompndx·˙V
34 7 29 31 33 fvmptd φRingCatALTVU=BasendxBHomndxHcompndx·˙
35 1 34 eqtrid φC=BasendxBHomndxHcompndx·˙