Metamath Proof Explorer


Theorem ringcvalALTV

Description: Value of the category of rings (in a universe). (Contributed by AV, 13-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcvalALTV.c C = RingCatALTV U
ringcvalALTV.u φ U V
ringcvalALTV.b φ B = U Ring
ringcvalALTV.h φ H = x B , y B x RingHom y
ringcvalALTV.o φ · ˙ = v B × B , z B g 2 nd v RingHom z , f 1 st v RingHom 2 nd v g f
Assertion ringcvalALTV φ C = Base ndx B Hom ndx H comp ndx · ˙

Proof

Step Hyp Ref Expression
1 ringcvalALTV.c C = RingCatALTV U
2 ringcvalALTV.u φ U V
3 ringcvalALTV.b φ B = U Ring
4 ringcvalALTV.h φ H = x B , y B x RingHom y
5 ringcvalALTV.o φ · ˙ = v B × B , z B g 2 nd v RingHom z , f 1 st v RingHom 2 nd v g f
6 df-ringcALTV RingCatALTV = u V u Ring / b Base ndx b Hom ndx x b , y b x RingHom y comp ndx v b × b , z b g 2 nd v RingHom z , f 1 st v RingHom 2 nd v g f
7 6 a1i φ RingCatALTV = u V u Ring / b Base ndx b Hom ndx x b , y b x RingHom y comp ndx v b × b , z b g 2 nd v RingHom z , f 1 st v RingHom 2 nd v g f
8 vex u V
9 8 inex1 u Ring V
10 9 a1i φ u = U u Ring V
11 ineq1 u = U u Ring = U Ring
12 11 adantl φ u = U u Ring = U Ring
13 3 adantr φ u = U B = U Ring
14 12 13 eqtr4d φ u = U u Ring = B
15 simpr φ u = U b = B b = B
16 15 opeq2d φ u = U b = B Base ndx b = Base ndx B
17 eqidd φ u = U b = B x RingHom y = x RingHom y
18 15 15 17 mpoeq123dv φ u = U b = B x b , y b x RingHom y = x B , y B x RingHom y
19 4 ad2antrr φ u = U b = B H = x B , y B x RingHom y
20 18 19 eqtr4d φ u = U b = B x b , y b x RingHom y = H
21 20 opeq2d φ u = U b = B Hom ndx x b , y b x RingHom y = Hom ndx H
22 15 sqxpeqd φ u = U b = B b × b = B × B
23 eqidd φ u = U b = B g 2 nd v RingHom z , f 1 st v RingHom 2 nd v g f = g 2 nd v RingHom z , f 1 st v RingHom 2 nd v g f
24 22 15 23 mpoeq123dv φ u = U b = B v b × b , z b g 2 nd v RingHom z , f 1 st v RingHom 2 nd v g f = v B × B , z B g 2 nd v RingHom z , f 1 st v RingHom 2 nd v g f
25 5 ad2antrr φ u = U b = B · ˙ = v B × B , z B g 2 nd v RingHom z , f 1 st v RingHom 2 nd v g f
26 24 25 eqtr4d φ u = U b = B v b × b , z b g 2 nd v RingHom z , f 1 st v RingHom 2 nd v g f = · ˙
27 26 opeq2d φ u = U b = B comp ndx v b × b , z b g 2 nd v RingHom z , f 1 st v RingHom 2 nd v g f = comp ndx · ˙
28 16 21 27 tpeq123d φ u = U b = B Base ndx b Hom ndx x b , y b x RingHom y comp ndx v b × b , z b g 2 nd v RingHom z , f 1 st v RingHom 2 nd v g f = Base ndx B Hom ndx H comp ndx · ˙
29 10 14 28 csbied2 φ u = U u Ring / b Base ndx b Hom ndx x b , y b x RingHom y comp ndx v b × b , z b g 2 nd v RingHom z , f 1 st v RingHom 2 nd v g f = Base ndx B Hom ndx H comp ndx · ˙
30 elex U V U V
31 2 30 syl φ U V
32 tpex Base ndx B Hom ndx H comp ndx · ˙ V
33 32 a1i φ Base ndx B Hom ndx H comp ndx · ˙ V
34 7 29 31 33 fvmptd φ RingCatALTV U = Base ndx B Hom ndx H comp ndx · ˙
35 1 34 eqtrid φ C = Base ndx B Hom ndx H comp ndx · ˙