Description: The ring inverse expressed in terms of multiplication. (Contributed by Thierry Arnoux, 23-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringinvval.b | |
|
ringinvval.p | |
||
ringinvval.o | |
||
ringinvval.n | |
||
ringinvval.u | |
||
Assertion | ringinvval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringinvval.b | |
|
2 | ringinvval.p | |
|
3 | ringinvval.o | |
|
4 | ringinvval.n | |
|
5 | ringinvval.u | |
|
6 | eqid | |
|
7 | 5 6 | unitgrpbas | |
8 | 5 | fvexi | |
9 | eqid | |
|
10 | 9 2 | mgpplusg | |
11 | 6 10 | ressplusg | |
12 | 8 11 | ax-mp | |
13 | eqid | |
|
14 | 5 6 4 | invrfval | |
15 | 7 12 13 14 | grpinvval | |
16 | 15 | adantl | |
17 | 5 6 3 | unitgrpid | |
18 | 17 | adantr | |
19 | 18 | eqeq2d | |
20 | 19 | riotabidva | |
21 | 20 | adantr | |
22 | 16 21 | eqtr4d | |