Metamath Proof Explorer


Theorem ringinvval

Description: The ring inverse expressed in terms of multiplication. (Contributed by Thierry Arnoux, 23-Oct-2017)

Ref Expression
Hypotheses ringinvval.b B=BaseR
ringinvval.p ˙=R
ringinvval.o 1˙=1R
ringinvval.n N=invrR
ringinvval.u U=UnitR
Assertion ringinvval RRingXUNX=ιyU|y˙X=1˙

Proof

Step Hyp Ref Expression
1 ringinvval.b B=BaseR
2 ringinvval.p ˙=R
3 ringinvval.o 1˙=1R
4 ringinvval.n N=invrR
5 ringinvval.u U=UnitR
6 eqid mulGrpR𝑠U=mulGrpR𝑠U
7 5 6 unitgrpbas U=BasemulGrpR𝑠U
8 5 fvexi UV
9 eqid mulGrpR=mulGrpR
10 9 2 mgpplusg ˙=+mulGrpR
11 6 10 ressplusg UV˙=+mulGrpR𝑠U
12 8 11 ax-mp ˙=+mulGrpR𝑠U
13 eqid 0mulGrpR𝑠U=0mulGrpR𝑠U
14 5 6 4 invrfval N=invgmulGrpR𝑠U
15 7 12 13 14 grpinvval XUNX=ιyU|y˙X=0mulGrpR𝑠U
16 15 adantl RRingXUNX=ιyU|y˙X=0mulGrpR𝑠U
17 5 6 3 unitgrpid RRing1˙=0mulGrpR𝑠U
18 17 adantr RRingyU1˙=0mulGrpR𝑠U
19 18 eqeq2d RRingyUy˙X=1˙y˙X=0mulGrpR𝑠U
20 19 riotabidva RRingιyU|y˙X=1˙=ιyU|y˙X=0mulGrpR𝑠U
21 20 adantr RRingXUιyU|y˙X=1˙=ιyU|y˙X=0mulGrpR𝑠U
22 16 21 eqtr4d RRingXUNX=ιyU|y˙X=1˙