Metamath Proof Explorer


Theorem ringsubdi

Description: Ring multiplication distributes over subtraction. ( subdi analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)

Ref Expression
Hypotheses ringsubdi.b B=BaseR
ringsubdi.t ·˙=R
ringsubdi.m -˙=-R
ringsubdi.r φRRing
ringsubdi.x φXB
ringsubdi.y φYB
ringsubdi.z φZB
Assertion ringsubdi φX·˙Y-˙Z=X·˙Y-˙X·˙Z

Proof

Step Hyp Ref Expression
1 ringsubdi.b B=BaseR
2 ringsubdi.t ·˙=R
3 ringsubdi.m -˙=-R
4 ringsubdi.r φRRing
5 ringsubdi.x φXB
6 ringsubdi.y φYB
7 ringsubdi.z φZB
8 ringgrp RRingRGrp
9 4 8 syl φRGrp
10 eqid invgR=invgR
11 1 10 grpinvcl RGrpZBinvgRZB
12 9 7 11 syl2anc φinvgRZB
13 eqid +R=+R
14 1 13 2 ringdi RRingXBYBinvgRZBX·˙Y+RinvgRZ=X·˙Y+RX·˙invgRZ
15 4 5 6 12 14 syl13anc φX·˙Y+RinvgRZ=X·˙Y+RX·˙invgRZ
16 1 2 10 4 5 7 ringmneg2 φX·˙invgRZ=invgRX·˙Z
17 16 oveq2d φX·˙Y+RX·˙invgRZ=X·˙Y+RinvgRX·˙Z
18 15 17 eqtrd φX·˙Y+RinvgRZ=X·˙Y+RinvgRX·˙Z
19 1 13 10 3 grpsubval YBZBY-˙Z=Y+RinvgRZ
20 6 7 19 syl2anc φY-˙Z=Y+RinvgRZ
21 20 oveq2d φX·˙Y-˙Z=X·˙Y+RinvgRZ
22 1 2 ringcl RRingXBYBX·˙YB
23 4 5 6 22 syl3anc φX·˙YB
24 1 2 ringcl RRingXBZBX·˙ZB
25 4 5 7 24 syl3anc φX·˙ZB
26 1 13 10 3 grpsubval X·˙YBX·˙ZBX·˙Y-˙X·˙Z=X·˙Y+RinvgRX·˙Z
27 23 25 26 syl2anc φX·˙Y-˙X·˙Z=X·˙Y+RinvgRX·˙Z
28 18 21 27 3eqtr4d φX·˙Y-˙Z=X·˙Y-˙X·˙Z