Metamath Proof Explorer


Theorem rmspecnonsq

Description: The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014)

Ref Expression
Assertion rmspecnonsq A2A21

Proof

Step Hyp Ref Expression
1 eluzelz A2A
2 zsqcl AA2
3 1 2 syl A2A2
4 1zzd A21
5 3 4 zsubcld A2A21
6 sq1 12=1
7 eluz2b2 A2A1<A
8 7 simprbi A21<A
9 1red A21
10 eluzelre A2A
11 0le1 01
12 11 a1i A201
13 eluzge2nn0 A2A0
14 13 nn0ge0d A20A
15 9 10 12 14 lt2sqd A21<A12<A2
16 8 15 mpbid A212<A2
17 6 16 eqbrtrrid A21<A2
18 10 resqcld A2A2
19 9 18 posdifd A21<A20<A21
20 17 19 mpbid A20<A21
21 elnnz A21A210<A21
22 5 20 21 sylanbrc A2A21
23 rmspecsqrtnq A2A21
24 23 eldifbd A2¬A21
25 24 intnand A2¬A21A21
26 df-squarenn =a|a
27 26 eleq2i A21A21a|a
28 fveq2 a=A21a=A21
29 28 eleq1d a=A21aA21
30 29 elrab A21a|aA21A21
31 27 30 bitr2i A21A21A21
32 25 31 sylnib A2¬A21
33 22 32 eldifd A2A21