Metamath Proof Explorer


Theorem rmxdiophlem

Description: X can be expressed in terms of Y, so it is also Diophantine. (Contributed by Stefan O'Rear, 15-Oct-2014)

Ref Expression
Assertion rmxdiophlem A 2 N 0 X 0 X = A X rm N y 0 y = A Y rm N X 2 A 2 1 y 2 = 1

Proof

Step Hyp Ref Expression
1 nn0sqcl X 0 X 2 0
2 1 3ad2ant3 A 2 N 0 X 0 X 2 0
3 2 nn0cnd A 2 N 0 X 0 X 2
4 simp1 A 2 N 0 X 0 A 2
5 nn0z N 0 N
6 5 3ad2ant2 A 2 N 0 X 0 N
7 frmx X rm : 2 × 0
8 7 fovcl A 2 N A X rm N 0
9 4 6 8 syl2anc A 2 N 0 X 0 A X rm N 0
10 nn0sqcl A X rm N 0 A X rm N 2 0
11 9 10 syl A 2 N 0 X 0 A X rm N 2 0
12 11 nn0cnd A 2 N 0 X 0 A X rm N 2
13 rmspecnonsq A 2 A 2 1
14 13 eldifad A 2 A 2 1
15 14 nnnn0d A 2 A 2 1 0
16 15 3ad2ant1 A 2 N 0 X 0 A 2 1 0
17 rmynn0 A 2 N 0 A Y rm N 0
18 17 3adant3 A 2 N 0 X 0 A Y rm N 0
19 nn0sqcl A Y rm N 0 A Y rm N 2 0
20 18 19 syl A 2 N 0 X 0 A Y rm N 2 0
21 16 20 nn0mulcld A 2 N 0 X 0 A 2 1 A Y rm N 2 0
22 21 nn0cnd A 2 N 0 X 0 A 2 1 A Y rm N 2
23 3 12 22 subcan2ad A 2 N 0 X 0 X 2 A 2 1 A Y rm N 2 = A X rm N 2 A 2 1 A Y rm N 2 X 2 = A X rm N 2
24 rmxynorm A 2 N A X rm N 2 A 2 1 A Y rm N 2 = 1
25 4 6 24 syl2anc A 2 N 0 X 0 A X rm N 2 A 2 1 A Y rm N 2 = 1
26 25 eqeq2d A 2 N 0 X 0 X 2 A 2 1 A Y rm N 2 = A X rm N 2 A 2 1 A Y rm N 2 X 2 A 2 1 A Y rm N 2 = 1
27 nn0re X 0 X
28 nn0ge0 X 0 0 X
29 27 28 jca X 0 X 0 X
30 29 3ad2ant3 A 2 N 0 X 0 X 0 X
31 nn0re A X rm N 0 A X rm N
32 nn0ge0 A X rm N 0 0 A X rm N
33 31 32 jca A X rm N 0 A X rm N 0 A X rm N
34 9 33 syl A 2 N 0 X 0 A X rm N 0 A X rm N
35 sq11 X 0 X A X rm N 0 A X rm N X 2 = A X rm N 2 X = A X rm N
36 30 34 35 syl2anc A 2 N 0 X 0 X 2 = A X rm N 2 X = A X rm N
37 23 26 36 3bitr3rd A 2 N 0 X 0 X = A X rm N X 2 A 2 1 A Y rm N 2 = 1
38 oveq1 y = A Y rm N y 2 = A Y rm N 2
39 38 oveq2d y = A Y rm N A 2 1 y 2 = A 2 1 A Y rm N 2
40 39 oveq2d y = A Y rm N X 2 A 2 1 y 2 = X 2 A 2 1 A Y rm N 2
41 40 eqeq1d y = A Y rm N X 2 A 2 1 y 2 = 1 X 2 A 2 1 A Y rm N 2 = 1
42 41 ceqsrexv A Y rm N 0 y 0 y = A Y rm N X 2 A 2 1 y 2 = 1 X 2 A 2 1 A Y rm N 2 = 1
43 18 42 syl A 2 N 0 X 0 y 0 y = A Y rm N X 2 A 2 1 y 2 = 1 X 2 A 2 1 A Y rm N 2 = 1
44 37 43 bitr4d A 2 N 0 X 0 X = A X rm N y 0 y = A Y rm N X 2 A 2 1 y 2 = 1