Step |
Hyp |
Ref |
Expression |
1 |
|
nn0sqcl |
|
2 |
1
|
3ad2ant3 |
|
3 |
2
|
nn0cnd |
|
4 |
|
simp1 |
|
5 |
|
nn0z |
|
6 |
5
|
3ad2ant2 |
|
7 |
|
frmx |
|
8 |
7
|
fovcl |
|
9 |
4 6 8
|
syl2anc |
|
10 |
|
nn0sqcl |
|
11 |
9 10
|
syl |
|
12 |
11
|
nn0cnd |
|
13 |
|
rmspecnonsq |
|
14 |
13
|
eldifad |
|
15 |
14
|
nnnn0d |
|
16 |
15
|
3ad2ant1 |
|
17 |
|
rmynn0 |
|
18 |
17
|
3adant3 |
|
19 |
|
nn0sqcl |
|
20 |
18 19
|
syl |
|
21 |
16 20
|
nn0mulcld |
|
22 |
21
|
nn0cnd |
|
23 |
3 12 22
|
subcan2ad |
|
24 |
|
rmxynorm |
|
25 |
4 6 24
|
syl2anc |
|
26 |
25
|
eqeq2d |
|
27 |
|
nn0re |
|
28 |
|
nn0ge0 |
|
29 |
27 28
|
jca |
|
30 |
29
|
3ad2ant3 |
|
31 |
|
nn0re |
|
32 |
|
nn0ge0 |
|
33 |
31 32
|
jca |
|
34 |
9 33
|
syl |
|
35 |
|
sq11 |
|
36 |
30 34 35
|
syl2anc |
|
37 |
23 26 36
|
3bitr3rd |
|
38 |
|
oveq1 |
|
39 |
38
|
oveq2d |
|
40 |
39
|
oveq2d |
|
41 |
40
|
eqeq1d |
|
42 |
41
|
ceqsrexv |
|
43 |
18 42
|
syl |
|
44 |
37 43
|
bitr4d |
|