Description: X can be expressed in terms of Y, so it is also Diophantine. (Contributed by Stefan O'Rear, 15-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rmxdiophlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sqcl | |
|
2 | 1 | 3ad2ant3 | |
3 | 2 | nn0cnd | |
4 | simp1 | |
|
5 | nn0z | |
|
6 | 5 | 3ad2ant2 | |
7 | frmx | |
|
8 | 7 | fovcl | |
9 | 4 6 8 | syl2anc | |
10 | nn0sqcl | |
|
11 | 9 10 | syl | |
12 | 11 | nn0cnd | |
13 | rmspecnonsq | |
|
14 | 13 | eldifad | |
15 | 14 | nnnn0d | |
16 | 15 | 3ad2ant1 | |
17 | rmynn0 | |
|
18 | 17 | 3adant3 | |
19 | nn0sqcl | |
|
20 | 18 19 | syl | |
21 | 16 20 | nn0mulcld | |
22 | 21 | nn0cnd | |
23 | 3 12 22 | subcan2ad | |
24 | rmxynorm | |
|
25 | 4 6 24 | syl2anc | |
26 | 25 | eqeq2d | |
27 | nn0re | |
|
28 | nn0ge0 | |
|
29 | 27 28 | jca | |
30 | 29 | 3ad2ant3 | |
31 | nn0re | |
|
32 | nn0ge0 | |
|
33 | 31 32 | jca | |
34 | 9 33 | syl | |
35 | sq11 | |
|
36 | 30 34 35 | syl2anc | |
37 | 23 26 36 | 3bitr3rd | |
38 | oveq1 | |
|
39 | 38 | oveq2d | |
40 | 39 | oveq2d | |
41 | 40 | eqeq1d | |
42 | 41 | ceqsrexv | |
43 | 18 42 | syl | |
44 | 37 43 | bitr4d | |