Metamath Proof Explorer


Theorem rmxdiophlem

Description: X can be expressed in terms of Y, so it is also Diophantine. (Contributed by Stefan O'Rear, 15-Oct-2014)

Ref Expression
Assertion rmxdiophlem A2N0X0X=AXrmNy0y=AYrmNX2A21y2=1

Proof

Step Hyp Ref Expression
1 nn0sqcl X0X20
2 1 3ad2ant3 A2N0X0X20
3 2 nn0cnd A2N0X0X2
4 simp1 A2N0X0A2
5 nn0z N0N
6 5 3ad2ant2 A2N0X0N
7 frmx Xrm:2×0
8 7 fovcl A2NAXrmN0
9 4 6 8 syl2anc A2N0X0AXrmN0
10 nn0sqcl AXrmN0AXrmN20
11 9 10 syl A2N0X0AXrmN20
12 11 nn0cnd A2N0X0AXrmN2
13 rmspecnonsq A2A21
14 13 eldifad A2A21
15 14 nnnn0d A2A210
16 15 3ad2ant1 A2N0X0A210
17 rmynn0 A2N0AYrmN0
18 17 3adant3 A2N0X0AYrmN0
19 nn0sqcl AYrmN0AYrmN20
20 18 19 syl A2N0X0AYrmN20
21 16 20 nn0mulcld A2N0X0A21AYrmN20
22 21 nn0cnd A2N0X0A21AYrmN2
23 3 12 22 subcan2ad A2N0X0X2A21AYrmN2=AXrmN2A21AYrmN2X2=AXrmN2
24 rmxynorm A2NAXrmN2A21AYrmN2=1
25 4 6 24 syl2anc A2N0X0AXrmN2A21AYrmN2=1
26 25 eqeq2d A2N0X0X2A21AYrmN2=AXrmN2A21AYrmN2X2A21AYrmN2=1
27 nn0re X0X
28 nn0ge0 X00X
29 27 28 jca X0X0X
30 29 3ad2ant3 A2N0X0X0X
31 nn0re AXrmN0AXrmN
32 nn0ge0 AXrmN00AXrmN
33 31 32 jca AXrmN0AXrmN0AXrmN
34 9 33 syl A2N0X0AXrmN0AXrmN
35 sq11 X0XAXrmN0AXrmNX2=AXrmN2X=AXrmN
36 30 34 35 syl2anc A2N0X0X2=AXrmN2X=AXrmN
37 23 26 36 3bitr3rd A2N0X0X=AXrmNX2A21AYrmN2=1
38 oveq1 y=AYrmNy2=AYrmN2
39 38 oveq2d y=AYrmNA21y2=A21AYrmN2
40 39 oveq2d y=AYrmNX2A21y2=X2A21AYrmN2
41 40 eqeq1d y=AYrmNX2A21y2=1X2A21AYrmN2=1
42 41 ceqsrexv AYrmN0y0y=AYrmNX2A21y2=1X2A21AYrmN2=1
43 18 42 syl A2N0X0y0y=AYrmNX2A21y2=1X2A21AYrmN2=1
44 37 43 bitr4d A2N0X0X=AXrmNy0y=AYrmNX2A21y2=1