Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rncmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 | cnf | |
5 | 4 | adantl | |
6 | 5 | ffnd | |
7 | dffn4 | |
|
8 | 6 7 | sylib | |
9 | cntop2 | |
|
10 | 9 | adantl | |
11 | 5 | frnd | |
12 | 3 | restuni | |
13 | 10 11 12 | syl2anc | |
14 | foeq3 | |
|
15 | 13 14 | syl | |
16 | 8 15 | mpbid | |
17 | simpr | |
|
18 | toptopon2 | |
|
19 | 10 18 | sylib | |
20 | ssidd | |
|
21 | cnrest2 | |
|
22 | 19 20 11 21 | syl3anc | |
23 | 17 22 | mpbid | |
24 | eqid | |
|
25 | 24 | cncmp | |
26 | 1 16 23 25 | syl3anc | |