Metamath Proof Explorer


Theorem rncmp

Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion rncmp JCompFJCnKK𝑡ranFComp

Proof

Step Hyp Ref Expression
1 simpl JCompFJCnKJComp
2 eqid J=J
3 eqid K=K
4 2 3 cnf FJCnKF:JK
5 4 adantl JCompFJCnKF:JK
6 5 ffnd JCompFJCnKFFnJ
7 dffn4 FFnJF:JontoranF
8 6 7 sylib JCompFJCnKF:JontoranF
9 cntop2 FJCnKKTop
10 9 adantl JCompFJCnKKTop
11 5 frnd JCompFJCnKranFK
12 3 restuni KTopranFKranF=K𝑡ranF
13 10 11 12 syl2anc JCompFJCnKranF=K𝑡ranF
14 foeq3 ranF=K𝑡ranFF:JontoranFF:JontoK𝑡ranF
15 13 14 syl JCompFJCnKF:JontoranFF:JontoK𝑡ranF
16 8 15 mpbid JCompFJCnKF:JontoK𝑡ranF
17 simpr JCompFJCnKFJCnK
18 toptopon2 KTopKTopOnK
19 10 18 sylib JCompFJCnKKTopOnK
20 ssidd JCompFJCnKranFranF
21 cnrest2 KTopOnKranFranFranFKFJCnKFJCnK𝑡ranF
22 19 20 11 21 syl3anc JCompFJCnKFJCnKFJCnK𝑡ranF
23 17 22 mpbid JCompFJCnKFJCnK𝑡ranF
24 eqid K𝑡ranF=K𝑡ranF
25 24 cncmp JCompF:JontoK𝑡ranFFJCnK𝑡ranFK𝑡ranFComp
26 1 16 23 25 syl3anc JCompFJCnKK𝑡ranFComp