Metamath Proof Explorer


Theorem rngoueqz

Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi instead. In a unital ring the zero equals the ring unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010) (New usage is discouraged.)

Ref Expression
Hypotheses uznzr.1 G=1stR
uznzr.2 H=2ndR
uznzr.3 Z=GIdG
uznzr.4 U=GIdH
uznzr.5 X=ranG
Assertion rngoueqz RRingOpsX1𝑜U=Z

Proof

Step Hyp Ref Expression
1 uznzr.1 G=1stR
2 uznzr.2 H=2ndR
3 uznzr.3 Z=GIdG
4 uznzr.4 U=GIdH
5 uznzr.5 X=ranG
6 1 5 3 rngo0cl RRingOpsZX
7 en1eqsn ZXX1𝑜X=Z
8 1 rneqi ranG=ran1stR
9 8 2 4 rngo1cl RRingOpsUranG
10 eleq2 X=ZUXUZ
11 10 biimpd X=ZUXUZ
12 elsni UZU=Z
13 11 12 syl6com UXX=ZU=Z
14 5 eqcomi ranG=X
15 13 14 eleq2s UranGX=ZU=Z
16 9 15 syl RRingOpsX=ZU=Z
17 7 16 syl5com ZXX1𝑜RRingOpsU=Z
18 17 ex ZXX1𝑜RRingOpsU=Z
19 18 com23 ZXRRingOpsX1𝑜U=Z
20 6 19 mpcom RRingOpsX1𝑜U=Z
21 1 5 rngone0 RRingOpsX
22 oveq2 U=ZxHU=xHZ
23 22 ralrimivw U=ZxXxHU=xHZ
24 3 5 1 2 rngorz RRingOpsxXxHZ=Z
25 24 ralrimiva RRingOpsxXxHZ=Z
26 5 8 eqtri X=ran1stR
27 2 26 4 rngoridm RRingOpsxXxHU=x
28 27 ralrimiva RRingOpsxXxHU=x
29 r19.26 xXxHU=xxHU=xHZxXxHU=xxXxHU=xHZ
30 r19.26 xXxHU=xxHU=xHZxHZ=ZxXxHU=xxHU=xHZxXxHZ=Z
31 eqtr x=xHUxHU=xHZx=xHZ
32 eqtr x=xHZxHZ=Zx=Z
33 32 ex x=xHZxHZ=Zx=Z
34 31 33 syl x=xHUxHU=xHZxHZ=Zx=Z
35 34 ex x=xHUxHU=xHZxHZ=Zx=Z
36 35 eqcoms xHU=xxHU=xHZxHZ=Zx=Z
37 36 imp31 xHU=xxHU=xHZxHZ=Zx=Z
38 37 ralimi xXxHU=xxHU=xHZxHZ=ZxXx=Z
39 eqsn XX=ZxXx=Z
40 ensn1g ZXZ1𝑜
41 6 40 syl RRingOpsZ1𝑜
42 breq1 X=ZX1𝑜Z1𝑜
43 41 42 imbitrrid X=ZRRingOpsX1𝑜
44 39 43 syl6bir XxXx=ZRRingOpsX1𝑜
45 44 com3l xXx=ZRRingOpsXX1𝑜
46 38 45 syl xXxHU=xxHU=xHZxHZ=ZRRingOpsXX1𝑜
47 30 46 sylbir xXxHU=xxHU=xHZxXxHZ=ZRRingOpsXX1𝑜
48 47 ex xXxHU=xxHU=xHZxXxHZ=ZRRingOpsXX1𝑜
49 29 48 sylbir xXxHU=xxXxHU=xHZxXxHZ=ZRRingOpsXX1𝑜
50 49 ex xXxHU=xxXxHU=xHZxXxHZ=ZRRingOpsXX1𝑜
51 50 com24 xXxHU=xRRingOpsxXxHZ=ZxXxHU=xHZXX1𝑜
52 28 51 mpcom RRingOpsxXxHZ=ZxXxHU=xHZXX1𝑜
53 25 52 mpd RRingOpsxXxHU=xHZXX1𝑜
54 23 53 syl5com U=ZRRingOpsXX1𝑜
55 54 com13 XRRingOpsU=ZX1𝑜
56 21 55 mpcom RRingOpsU=ZX1𝑜
57 20 56 impbid RRingOpsX1𝑜U=Z