| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uznzr.1 |
|
| 2 |
|
uznzr.2 |
|
| 3 |
|
uznzr.3 |
|
| 4 |
|
uznzr.4 |
|
| 5 |
|
uznzr.5 |
|
| 6 |
1 5 3
|
rngo0cl |
|
| 7 |
|
en1eqsn |
|
| 8 |
1
|
rneqi |
|
| 9 |
8 2 4
|
rngo1cl |
|
| 10 |
|
eleq2 |
|
| 11 |
10
|
biimpd |
|
| 12 |
|
elsni |
|
| 13 |
11 12
|
syl6com |
|
| 14 |
5
|
eqcomi |
|
| 15 |
13 14
|
eleq2s |
|
| 16 |
9 15
|
syl |
|
| 17 |
7 16
|
syl5com |
|
| 18 |
17
|
ex |
|
| 19 |
18
|
com23 |
|
| 20 |
6 19
|
mpcom |
|
| 21 |
1 5
|
rngone0 |
|
| 22 |
|
oveq2 |
|
| 23 |
22
|
ralrimivw |
|
| 24 |
3 5 1 2
|
rngorz |
|
| 25 |
24
|
ralrimiva |
|
| 26 |
5 8
|
eqtri |
|
| 27 |
2 26 4
|
rngoridm |
|
| 28 |
27
|
ralrimiva |
|
| 29 |
|
r19.26 |
|
| 30 |
|
r19.26 |
|
| 31 |
|
eqtr |
|
| 32 |
|
eqtr |
|
| 33 |
32
|
ex |
|
| 34 |
31 33
|
syl |
|
| 35 |
34
|
ex |
|
| 36 |
35
|
eqcoms |
|
| 37 |
36
|
imp31 |
|
| 38 |
37
|
ralimi |
|
| 39 |
|
eqsn |
|
| 40 |
|
ensn1g |
|
| 41 |
6 40
|
syl |
|
| 42 |
|
breq1 |
|
| 43 |
41 42
|
imbitrrid |
|
| 44 |
39 43
|
biimtrrdi |
|
| 45 |
44
|
com3l |
|
| 46 |
38 45
|
syl |
|
| 47 |
30 46
|
sylbir |
|
| 48 |
47
|
ex |
|
| 49 |
29 48
|
sylbir |
|
| 50 |
49
|
ex |
|
| 51 |
50
|
com24 |
|
| 52 |
28 51
|
mpcom |
|
| 53 |
25 52
|
mpd |
|
| 54 |
23 53
|
syl5com |
|
| 55 |
54
|
com13 |
|
| 56 |
21 55
|
mpcom |
|
| 57 |
20 56
|
impbid |
|