Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi instead. In a unital ring the zero equals the ring unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uznzr.1 | |
|
uznzr.2 | |
||
uznzr.3 | |
||
uznzr.4 | |
||
uznzr.5 | |
||
Assertion | rngoueqz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uznzr.1 | |
|
2 | uznzr.2 | |
|
3 | uznzr.3 | |
|
4 | uznzr.4 | |
|
5 | uznzr.5 | |
|
6 | 1 5 3 | rngo0cl | |
7 | en1eqsn | |
|
8 | 1 | rneqi | |
9 | 8 2 4 | rngo1cl | |
10 | eleq2 | |
|
11 | 10 | biimpd | |
12 | elsni | |
|
13 | 11 12 | syl6com | |
14 | 5 | eqcomi | |
15 | 13 14 | eleq2s | |
16 | 9 15 | syl | |
17 | 7 16 | syl5com | |
18 | 17 | ex | |
19 | 18 | com23 | |
20 | 6 19 | mpcom | |
21 | 1 5 | rngone0 | |
22 | oveq2 | |
|
23 | 22 | ralrimivw | |
24 | 3 5 1 2 | rngorz | |
25 | 24 | ralrimiva | |
26 | 5 8 | eqtri | |
27 | 2 26 4 | rngoridm | |
28 | 27 | ralrimiva | |
29 | r19.26 | |
|
30 | r19.26 | |
|
31 | eqtr | |
|
32 | eqtr | |
|
33 | 32 | ex | |
34 | 31 33 | syl | |
35 | 34 | ex | |
36 | 35 | eqcoms | |
37 | 36 | imp31 | |
38 | 37 | ralimi | |
39 | eqsn | |
|
40 | ensn1g | |
|
41 | 6 40 | syl | |
42 | breq1 | |
|
43 | 41 42 | imbitrrid | |
44 | 39 43 | syl6bir | |
45 | 44 | com3l | |
46 | 38 45 | syl | |
47 | 30 46 | sylbir | |
48 | 47 | ex | |
49 | 29 48 | sylbir | |
50 | 49 | ex | |
51 | 50 | com24 | |
52 | 28 51 | mpcom | |
53 | 25 52 | mpd | |
54 | 23 53 | syl5com | |
55 | 54 | com13 | |
56 | 21 55 | mpcom | |
57 | 20 56 | impbid | |