Metamath Proof Explorer


Theorem rngsubdir

Description: Ring multiplication distributes over subtraction. ( subdir analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014) ringsubdir generalized for non-unital rings. (Revised by AV, 23-Feb-2025)

Ref Expression
Hypotheses rngsubdi.b B=BaseR
rngsubdi.t ·˙=R
rngsubdi.m -˙=-R
rngsubdi.r φRRng
rngsubdi.x φXB
rngsubdi.y φYB
rngsubdi.z φZB
Assertion rngsubdir φX-˙Y·˙Z=X·˙Z-˙Y·˙Z

Proof

Step Hyp Ref Expression
1 rngsubdi.b B=BaseR
2 rngsubdi.t ·˙=R
3 rngsubdi.m -˙=-R
4 rngsubdi.r φRRng
5 rngsubdi.x φXB
6 rngsubdi.y φYB
7 rngsubdi.z φZB
8 eqid invgR=invgR
9 rnggrp RRngRGrp
10 4 9 syl φRGrp
11 1 8 10 6 grpinvcld φinvgRYB
12 eqid +R=+R
13 1 12 2 rngdir RRngXBinvgRYBZBX+RinvgRY·˙Z=X·˙Z+RinvgRY·˙Z
14 4 5 11 7 13 syl13anc φX+RinvgRY·˙Z=X·˙Z+RinvgRY·˙Z
15 1 2 8 4 6 7 rngmneg1 φinvgRY·˙Z=invgRY·˙Z
16 15 oveq2d φX·˙Z+RinvgRY·˙Z=X·˙Z+RinvgRY·˙Z
17 14 16 eqtrd φX+RinvgRY·˙Z=X·˙Z+RinvgRY·˙Z
18 1 12 8 3 grpsubval XBYBX-˙Y=X+RinvgRY
19 5 6 18 syl2anc φX-˙Y=X+RinvgRY
20 19 oveq1d φX-˙Y·˙Z=X+RinvgRY·˙Z
21 1 2 rngcl RRngXBZBX·˙ZB
22 4 5 7 21 syl3anc φX·˙ZB
23 1 2 rngcl RRngYBZBY·˙ZB
24 4 6 7 23 syl3anc φY·˙ZB
25 1 12 8 3 grpsubval X·˙ZBY·˙ZBX·˙Z-˙Y·˙Z=X·˙Z+RinvgRY·˙Z
26 22 24 25 syl2anc φX·˙Z-˙Y·˙Z=X·˙Z+RinvgRY·˙Z
27 17 20 26 3eqtr4d φX-˙Y·˙Z=X·˙Z-˙Y·˙Z