Metamath Proof Explorer


Theorem rnmptlb

Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis rnmptlb.1 φyxAyB
Assertion rnmptlb φyzranxAByz

Proof

Step Hyp Ref Expression
1 rnmptlb.1 φyxAyB
2 eqid xAB=xAB
3 2 elrnmpt zVzranxABxAz=B
4 3 elv zranxABxAz=B
5 nfra1 xxAwB
6 nfv xwz
7 rspa xAwBxAwB
8 7 3adant3 xAwBxAz=BwB
9 simp3 xAwBxAz=Bz=B
10 8 9 breqtrrd xAwBxAz=Bwz
11 10 3exp xAwBxAz=Bwz
12 5 6 11 rexlimd xAwBxAz=Bwz
13 12 imp xAwBxAz=Bwz
14 13 adantll φwxAwBxAz=Bwz
15 4 14 sylan2b φwxAwBzranxABwz
16 15 ralrimiva φwxAwBzranxABwz
17 breq1 y=wyBwB
18 17 ralbidv y=wxAyBxAwB
19 18 cbvrexvw yxAyBwxAwB
20 1 19 sylib φwxAwB
21 16 20 reximddv3 φwzranxABwz
22 breq1 w=ywzyz
23 22 ralbidv w=yzranxABwzzranxAByz
24 23 cbvrexvw wzranxABwzyzranxAByz
25 21 24 sylib φyzranxAByz