Metamath Proof Explorer


Theorem rpnnen2lem3

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)

Ref Expression
Hypothesis rpnnen2.1 F=x𝒫nifnx13n0
Assertion rpnnen2lem3 seq1+F12

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F=x𝒫nifnx13n0
2 1re 1
3 3nn 3
4 nndivre 1313
5 2 3 4 mp2an 13
6 5 recni 13
7 6 a1i 13
8 0re 0
9 3re 3
10 3pos 0<3
11 9 10 recgt0ii 0<13
12 8 5 11 ltleii 013
13 absid 1301313=13
14 5 12 13 mp2an 13=13
15 1lt3 1<3
16 recgt1 30<31<313<1
17 9 10 16 mp2an 1<313<1
18 15 17 mpbi 13<1
19 14 18 eqbrtri 13<1
20 19 a1i 13<1
21 1nn0 10
22 21 a1i 10
23 ssid
24 simpr k1k1
25 nnuz =1
26 24 25 eleqtrrdi k1k
27 1 rpnnen2lem1 kFk=ifk13k0
28 23 26 27 sylancr k1Fk=ifk13k0
29 26 iftrued k1ifk13k0=13k
30 28 29 eqtrd k1Fk=13k
31 7 20 22 30 geolim2 seq1+F131113
32 31 mptru seq1+F131113
33 exp1 13131=13
34 6 33 ax-mp 131=13
35 3cn 3
36 ax-1cn 1
37 3ne0 30
38 35 37 pm3.2i 330
39 divsubdir 31330313=3313
40 35 36 38 39 mp3an 313=3313
41 3m1e2 31=2
42 41 oveq1i 313=23
43 35 37 dividi 33=1
44 43 oveq1i 3313=113
45 40 42 44 3eqtr3ri 113=23
46 34 45 oveq12i 131113=1323
47 2cnne0 220
48 divcan7 12203301323=12
49 36 47 38 48 mp3an 1323=12
50 46 49 eqtri 131113=12
51 32 50 breqtri seq1+F12