| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpnnen2.1 |
|
| 2 |
|
1re |
|
| 3 |
|
3nn |
|
| 4 |
|
nndivre |
|
| 5 |
2 3 4
|
mp2an |
|
| 6 |
5
|
recni |
|
| 7 |
6
|
a1i |
|
| 8 |
|
0re |
|
| 9 |
|
3re |
|
| 10 |
|
3pos |
|
| 11 |
9 10
|
recgt0ii |
|
| 12 |
8 5 11
|
ltleii |
|
| 13 |
|
absid |
|
| 14 |
5 12 13
|
mp2an |
|
| 15 |
|
1lt3 |
|
| 16 |
|
recgt1 |
|
| 17 |
9 10 16
|
mp2an |
|
| 18 |
15 17
|
mpbi |
|
| 19 |
14 18
|
eqbrtri |
|
| 20 |
19
|
a1i |
|
| 21 |
|
1nn0 |
|
| 22 |
21
|
a1i |
|
| 23 |
|
ssid |
|
| 24 |
|
simpr |
|
| 25 |
|
nnuz |
|
| 26 |
24 25
|
eleqtrrdi |
|
| 27 |
1
|
rpnnen2lem1 |
|
| 28 |
23 26 27
|
sylancr |
|
| 29 |
26
|
iftrued |
|
| 30 |
28 29
|
eqtrd |
|
| 31 |
7 20 22 30
|
geolim2 |
|
| 32 |
31
|
mptru |
|
| 33 |
|
exp1 |
|
| 34 |
6 33
|
ax-mp |
|
| 35 |
|
3cn |
|
| 36 |
|
ax-1cn |
|
| 37 |
|
3ne0 |
|
| 38 |
35 37
|
pm3.2i |
|
| 39 |
|
divsubdir |
|
| 40 |
35 36 38 39
|
mp3an |
|
| 41 |
|
3m1e2 |
|
| 42 |
41
|
oveq1i |
|
| 43 |
35 37
|
dividi |
|
| 44 |
43
|
oveq1i |
|
| 45 |
40 42 44
|
3eqtr3ri |
|
| 46 |
34 45
|
oveq12i |
|
| 47 |
|
2cnne0 |
|
| 48 |
|
divcan7 |
|
| 49 |
36 47 38 48
|
mp3an |
|
| 50 |
46 49
|
eqtri |
|
| 51 |
32 50
|
breqtri |
|