Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rpnnen2.1 | |
|
Assertion | rpnnen2lem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpnnen2.1 | |
|
2 | 1re | |
|
3 | 3nn | |
|
4 | nndivre | |
|
5 | 2 3 4 | mp2an | |
6 | 5 | recni | |
7 | 6 | a1i | |
8 | 0re | |
|
9 | 3re | |
|
10 | 3pos | |
|
11 | 9 10 | recgt0ii | |
12 | 8 5 11 | ltleii | |
13 | absid | |
|
14 | 5 12 13 | mp2an | |
15 | 1lt3 | |
|
16 | recgt1 | |
|
17 | 9 10 16 | mp2an | |
18 | 15 17 | mpbi | |
19 | 14 18 | eqbrtri | |
20 | 19 | a1i | |
21 | 1nn0 | |
|
22 | 21 | a1i | |
23 | ssid | |
|
24 | simpr | |
|
25 | nnuz | |
|
26 | 24 25 | eleqtrrdi | |
27 | 1 | rpnnen2lem1 | |
28 | 23 26 27 | sylancr | |
29 | 26 | iftrued | |
30 | 28 29 | eqtrd | |
31 | 7 20 22 30 | geolim2 | |
32 | 31 | mptru | |
33 | exp1 | |
|
34 | 6 33 | ax-mp | |
35 | 3cn | |
|
36 | ax-1cn | |
|
37 | 3ne0 | |
|
38 | 35 37 | pm3.2i | |
39 | divsubdir | |
|
40 | 35 36 38 39 | mp3an | |
41 | 3m1e2 | |
|
42 | 41 | oveq1i | |
43 | 35 37 | dividi | |
44 | 43 | oveq1i | |
45 | 40 42 44 | 3eqtr3ri | |
46 | 34 45 | oveq12i | |
47 | 2cnne0 | |
|
48 | divcan7 | |
|
49 | 36 47 38 48 | mp3an | |
50 | 46 49 | eqtri | |
51 | 32 50 | breqtri | |