Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 31-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rpnnen2.1 | |
|
Assertion | rpnnen2lem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpnnen2.1 | |
|
2 | nnnn0 | |
|
3 | 0re | |
|
4 | 1re | |
|
5 | 3nn | |
|
6 | nndivre | |
|
7 | 4 5 6 | mp2an | |
8 | 3re | |
|
9 | 3pos | |
|
10 | 8 9 | recgt0ii | |
11 | 3 7 10 | ltleii | |
12 | expge0 | |
|
13 | 7 12 | mp3an1 | |
14 | 2 11 13 | sylancl | |
15 | 14 | 3ad2ant3 | |
16 | 0le0 | |
|
17 | breq2 | |
|
18 | breq2 | |
|
19 | 17 18 | ifboth | |
20 | 15 16 19 | sylancl | |
21 | sstr | |
|
22 | 1 | rpnnen2lem1 | |
23 | 21 22 | stoic3 | |
24 | 20 23 | breqtrrd | |
25 | reexpcl | |
|
26 | 7 2 25 | sylancr | |
27 | 26 | 3ad2ant3 | |
28 | 0red | |
|
29 | simp1 | |
|
30 | 29 | sseld | |
31 | ifle | |
|
32 | 27 28 15 30 31 | syl31anc | |
33 | 1 | rpnnen2lem1 | |
34 | 33 | 3adant1 | |
35 | 32 23 34 | 3brtr4d | |
36 | 24 35 | jca | |