Metamath Proof Explorer


Theorem rpnnen2lem4

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 31-Aug-2014)

Ref Expression
Hypothesis rpnnen2.1 F=x𝒫nifnx13n0
Assertion rpnnen2lem4 ABBk0FAkFAkFBk

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F=x𝒫nifnx13n0
2 nnnn0 kk0
3 0re 0
4 1re 1
5 3nn 3
6 nndivre 1313
7 4 5 6 mp2an 13
8 3re 3
9 3pos 0<3
10 8 9 recgt0ii 0<13
11 3 7 10 ltleii 013
12 expge0 13k0013013k
13 7 12 mp3an1 k0013013k
14 2 11 13 sylancl k013k
15 14 3ad2ant3 ABBk013k
16 0le0 00
17 breq2 13k=ifkA13k0013k0ifkA13k0
18 breq2 0=ifkA13k0000ifkA13k0
19 17 18 ifboth 013k000ifkA13k0
20 15 16 19 sylancl ABBk0ifkA13k0
21 sstr ABBA
22 1 rpnnen2lem1 AkFAk=ifkA13k0
23 21 22 stoic3 ABBkFAk=ifkA13k0
24 20 23 breqtrrd ABBk0FAk
25 reexpcl 13k013k
26 7 2 25 sylancr k13k
27 26 3ad2ant3 ABBk13k
28 0red ABBk0
29 simp1 ABBkAB
30 29 sseld ABBkkAkB
31 ifle 13k0013kkAkBifkA13k0ifkB13k0
32 27 28 15 30 31 syl31anc ABBkifkA13k0ifkB13k0
33 1 rpnnen2lem1 BkFBk=ifkB13k0
34 33 3adant1 ABBkFBk=ifkB13k0
35 32 23 34 3brtr4d ABBkFAkFBk
36 24 35 jca ABBk0FAkFAkFBk