Metamath Proof Explorer


Theorem rpnnen3lem

Description: Lemma for rpnnen3 . (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Assertion rpnnen3lem aba<bc|c<ac|c<b

Proof

Step Hyp Ref Expression
1 qbtwnre aba<bda<dd<b
2 simp2 aba<bda<dd<bd
3 simp3r aba<bda<dd<bd<b
4 breq1 c=dc<bd<b
5 4 elrab dc|c<bdd<b
6 2 3 5 sylanbrc aba<bda<dd<bdc|c<b
7 simp11 aba<bda<dd<ba
8 qre dd
9 8 3ad2ant2 aba<bda<dd<bd
10 simp3l aba<bda<dd<ba<d
11 7 9 10 ltnsymd aba<bda<dd<b¬d<a
12 11 intnand aba<bda<dd<b¬dd<a
13 breq1 c=dc<ad<a
14 13 elrab dc|c<add<a
15 12 14 sylnibr aba<bda<dd<b¬dc|c<a
16 nelne1 dc|c<b¬dc|c<ac|c<bc|c<a
17 6 15 16 syl2anc aba<bda<dd<bc|c<bc|c<a
18 17 necomd aba<bda<dd<bc|c<ac|c<b
19 18 rexlimdv3a aba<bda<dd<bc|c<ac|c<b
20 1 19 mpd aba<bc|c<ac|c<b
21 20 3expa aba<bc|c<ac|c<b