Metamath Proof Explorer


Theorem rrnval

Description: The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypothesis rrnval.1 X=I
Assertion rrnval IFinnI=xX,yXkIxkyk2

Proof

Step Hyp Ref Expression
1 rrnval.1 X=I
2 oveq2 i=Ii=I
3 2 1 eqtr4di i=Ii=X
4 sumeq1 i=Ikixkyk2=kIxkyk2
5 4 fveq2d i=Ikixkyk2=kIxkyk2
6 3 3 5 mpoeq123dv i=Ixi,yikixkyk2=xX,yXkIxkyk2
7 df-rrn n=iFinxi,yikixkyk2
8 fvrn0 kIxkyk2ran
9 8 rgen2w xXyXkIxkyk2ran
10 eqid xX,yXkIxkyk2=xX,yXkIxkyk2
11 10 fmpo xXyXkIxkyk2ranxX,yXkIxkyk2:X×Xran
12 9 11 mpbi xX,yXkIxkyk2:X×Xran
13 ovex IV
14 1 13 eqeltri XV
15 14 14 xpex X×XV
16 cnex V
17 sqrtf :
18 frn :ran
19 17 18 ax-mp ran
20 16 19 ssexi ranV
21 p0ex V
22 20 21 unex ranV
23 fex2 xX,yXkIxkyk2:X×XranX×XVranVxX,yXkIxkyk2V
24 12 15 22 23 mp3an xX,yXkIxkyk2V
25 6 7 24 fvmpt IFinnI=xX,yXkIxkyk2