Metamath Proof Explorer


Theorem rrxdsfi

Description: The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses rrxdsfi.h H=msup
rrxdsfi.b B=I
Assertion rrxdsfi IFindistH=fB,gBkIfkgk2

Proof

Step Hyp Ref Expression
1 rrxdsfi.h H=msup
2 rrxdsfi.b B=I
3 id IFinIFin
4 eqid BaseH=BaseH
5 3 1 4 rrxbasefi IFinBaseH=I
6 2 5 eqtr4id IFinB=BaseH
7 6 adantr IFinfBB=BaseH
8 df-refld fld=fld𝑠
9 8 oveq1i fldkIfkgk2=fld𝑠kIfkgk2
10 simp1 IFinfBgBIFin
11 simpr IFinfBfB
12 11 2 eleqtrdi IFinfBfI
13 12 3adant3 IFinfBgBfI
14 elmapi fIf:I
15 13 14 syl IFinfBgBf:I
16 15 ffvelcdmda IFinfBgBkIfk
17 simpr IFingBgB
18 17 2 eleqtrdi IFingBgI
19 18 3adant2 IFinfBgBgI
20 elmapi gIg:I
21 19 20 syl IFinfBgBg:I
22 21 ffvelcdmda IFinfBgBkIgk
23 16 22 resubcld IFinfBgBkIfkgk
24 23 resqcld IFinfBgBkIfkgk2
25 10 24 regsumfsum IFinfBgBfld𝑠kIfkgk2=kIfkgk2
26 9 25 eqtr2id IFinfBgBkIfkgk2=fldkIfkgk2
27 26 fveq2d IFinfBgBkIfkgk2=fldkIfkgk2
28 27 3expb IFinfBgBkIfkgk2=fldkIfkgk2
29 6 7 28 mpoeq123dva IFinfB,gBkIfkgk2=fBaseH,gBaseHfldkIfkgk2
30 1 4 rrxds IFinfBaseH,gBaseHfldkIfkgk2=distH
31 29 30 eqtr2d IFindistH=fB,gBkIfkgk2