Description: Lemma for rrxmet . (Contributed by Thierry Arnoux, 5-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrxmval.1 | |
|
rrxmval.d | |
||
rrxmetlem.1 | |
||
rrxmetlem.2 | |
||
rrxmetlem.3 | |
||
rrxmetlem.4 | |
||
rrxmetlem.5 | |
||
rrxmetlem.6 | |
||
Assertion | rrxmetlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxmval.1 | |
|
2 | rrxmval.d | |
|
3 | rrxmetlem.1 | |
|
4 | rrxmetlem.2 | |
|
5 | rrxmetlem.3 | |
|
6 | rrxmetlem.4 | |
|
7 | rrxmetlem.5 | |
|
8 | rrxmetlem.6 | |
|
9 | 8 6 | sstrd | |
10 | 9 | sselda | |
11 | 1 4 | rrxf | |
12 | 11 | ffvelcdmda | |
13 | 12 | recnd | |
14 | 10 13 | syldan | |
15 | 1 5 | rrxf | |
16 | 15 | ffvelcdmda | |
17 | 16 | recnd | |
18 | 10 17 | syldan | |
19 | 14 18 | subcld | |
20 | 19 | sqcld | |
21 | 6 | ssdifd | |
22 | 21 | sselda | |
23 | simpr | |
|
24 | 23 | eldifad | |
25 | 24 13 | syldan | |
26 | ssun1 | |
|
27 | 26 | a1i | |
28 | 0red | |
|
29 | 11 27 3 28 | suppssr | |
30 | ssun2 | |
|
31 | 30 | a1i | |
32 | 15 31 3 28 | suppssr | |
33 | 29 32 | eqtr4d | |
34 | 25 33 | subeq0bd | |
35 | 34 | sq0id | |
36 | 22 35 | syldan | |
37 | 8 20 36 7 | fsumss | |