Metamath Proof Explorer


Theorem ruclem3

Description: Lemma for ruc . The constructed interval [ X , Y ] always excludes M . (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 φ F :
ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
ruclem1.3 φ A
ruclem1.4 φ B
ruclem1.5 φ M
ruclem1.6 X = 1 st A B D M
ruclem1.7 Y = 2 nd A B D M
ruclem2.8 φ A < B
Assertion ruclem3 φ M < X Y < M

Proof

Step Hyp Ref Expression
1 ruc.1 φ F :
2 ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
3 ruclem1.3 φ A
4 ruclem1.4 φ B
5 ruclem1.5 φ M
6 ruclem1.6 X = 1 st A B D M
7 ruclem1.7 Y = 2 nd A B D M
8 ruclem2.8 φ A < B
9 3 4 readdcld φ A + B
10 9 rehalfcld φ A + B 2
11 5 10 lenltd φ M A + B 2 ¬ A + B 2 < M
12 avglt2 A B A < B A + B 2 < B
13 3 4 12 syl2anc φ A < B A + B 2 < B
14 8 13 mpbid φ A + B 2 < B
15 avglt1 A + B 2 B A + B 2 < B A + B 2 < A + B 2 + B 2
16 10 4 15 syl2anc φ A + B 2 < B A + B 2 < A + B 2 + B 2
17 14 16 mpbid φ A + B 2 < A + B 2 + B 2
18 10 4 readdcld φ A + B 2 + B
19 18 rehalfcld φ A + B 2 + B 2
20 lelttr M A + B 2 A + B 2 + B 2 M A + B 2 A + B 2 < A + B 2 + B 2 M < A + B 2 + B 2
21 5 10 19 20 syl3anc φ M A + B 2 A + B 2 < A + B 2 + B 2 M < A + B 2 + B 2
22 17 21 mpan2d φ M A + B 2 M < A + B 2 + B 2
23 11 22 sylbird φ ¬ A + B 2 < M M < A + B 2 + B 2
24 23 imp φ ¬ A + B 2 < M M < A + B 2 + B 2
25 1 2 3 4 5 6 7 ruclem1 φ A B D M 2 X = if A + B 2 < M A A + B 2 + B 2 Y = if A + B 2 < M A + B 2 B
26 25 simp2d φ X = if A + B 2 < M A A + B 2 + B 2
27 iffalse ¬ A + B 2 < M if A + B 2 < M A A + B 2 + B 2 = A + B 2 + B 2
28 26 27 sylan9eq φ ¬ A + B 2 < M X = A + B 2 + B 2
29 24 28 breqtrrd φ ¬ A + B 2 < M M < X
30 29 ex φ ¬ A + B 2 < M M < X
31 30 con1d φ ¬ M < X A + B 2 < M
32 25 simp3d φ Y = if A + B 2 < M A + B 2 B
33 iftrue A + B 2 < M if A + B 2 < M A + B 2 B = A + B 2
34 32 33 sylan9eq φ A + B 2 < M Y = A + B 2
35 simpr φ A + B 2 < M A + B 2 < M
36 34 35 eqbrtrd φ A + B 2 < M Y < M
37 36 ex φ A + B 2 < M Y < M
38 31 37 syld φ ¬ M < X Y < M
39 38 orrd φ M < X Y < M