Metamath Proof Explorer


Theorem ruclem3

Description: Lemma for ruc . The constructed interval [ X , Y ] always excludes M . (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 φF:
ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
ruclem1.3 φA
ruclem1.4 φB
ruclem1.5 φM
ruclem1.6 X=1stABDM
ruclem1.7 Y=2ndABDM
ruclem2.8 φA<B
Assertion ruclem3 φM<XY<M

Proof

Step Hyp Ref Expression
1 ruc.1 φF:
2 ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
3 ruclem1.3 φA
4 ruclem1.4 φB
5 ruclem1.5 φM
6 ruclem1.6 X=1stABDM
7 ruclem1.7 Y=2ndABDM
8 ruclem2.8 φA<B
9 3 4 readdcld φA+B
10 9 rehalfcld φA+B2
11 5 10 lenltd φMA+B2¬A+B2<M
12 avglt2 ABA<BA+B2<B
13 3 4 12 syl2anc φA<BA+B2<B
14 8 13 mpbid φA+B2<B
15 avglt1 A+B2BA+B2<BA+B2<A+B2+B2
16 10 4 15 syl2anc φA+B2<BA+B2<A+B2+B2
17 14 16 mpbid φA+B2<A+B2+B2
18 10 4 readdcld φA+B2+B
19 18 rehalfcld φA+B2+B2
20 lelttr MA+B2A+B2+B2MA+B2A+B2<A+B2+B2M<A+B2+B2
21 5 10 19 20 syl3anc φMA+B2A+B2<A+B2+B2M<A+B2+B2
22 17 21 mpan2d φMA+B2M<A+B2+B2
23 11 22 sylbird φ¬A+B2<MM<A+B2+B2
24 23 imp φ¬A+B2<MM<A+B2+B2
25 1 2 3 4 5 6 7 ruclem1 φABDM2X=ifA+B2<MAA+B2+B2Y=ifA+B2<MA+B2B
26 25 simp2d φX=ifA+B2<MAA+B2+B2
27 iffalse ¬A+B2<MifA+B2<MAA+B2+B2=A+B2+B2
28 26 27 sylan9eq φ¬A+B2<MX=A+B2+B2
29 24 28 breqtrrd φ¬A+B2<MM<X
30 29 ex φ¬A+B2<MM<X
31 30 con1d φ¬M<XA+B2<M
32 25 simp3d φY=ifA+B2<MA+B2B
33 iftrue A+B2<MifA+B2<MA+B2B=A+B2
34 32 33 sylan9eq φA+B2<MY=A+B2
35 simpr φA+B2<MA+B2<M
36 34 35 eqbrtrd φA+B2<MY<M
37 36 ex φA+B2<MY<M
38 31 37 syld φ¬M<XY<M
39 38 orrd φM<XY<M