Metamath Proof Explorer


Theorem sadass

Description: Sequence addition is associative. (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Assertion sadass A 0 B 0 C 0 A sadd B sadd C = A sadd B sadd C

Proof

Step Hyp Ref Expression
1 sadcl A 0 B 0 A sadd B 0
2 sadcl A sadd B 0 C 0 A sadd B sadd C 0
3 1 2 stoic3 A 0 B 0 C 0 A sadd B sadd C 0
4 3 sseld A 0 B 0 C 0 k A sadd B sadd C k 0
5 simp1 A 0 B 0 C 0 A 0
6 sadcl B 0 C 0 B sadd C 0
7 6 3adant1 A 0 B 0 C 0 B sadd C 0
8 sadcl A 0 B sadd C 0 A sadd B sadd C 0
9 5 7 8 syl2anc A 0 B 0 C 0 A sadd B sadd C 0
10 9 sseld A 0 B 0 C 0 k A sadd B sadd C k 0
11 simpl1 A 0 B 0 C 0 k 0 A 0
12 simpl2 A 0 B 0 C 0 k 0 B 0
13 simpl3 A 0 B 0 C 0 k 0 C 0
14 simpr A 0 B 0 C 0 k 0 k 0
15 1nn0 1 0
16 15 a1i A 0 B 0 C 0 k 0 1 0
17 14 16 nn0addcld A 0 B 0 C 0 k 0 k + 1 0
18 11 12 13 17 sadasslem A 0 B 0 C 0 k 0 A sadd B sadd C 0 ..^ k + 1 = A sadd B sadd C 0 ..^ k + 1
19 18 eleq2d A 0 B 0 C 0 k 0 k A sadd B sadd C 0 ..^ k + 1 k A sadd B sadd C 0 ..^ k + 1
20 elin k A sadd B sadd C 0 ..^ k + 1 k A sadd B sadd C k 0 ..^ k + 1
21 elin k A sadd B sadd C 0 ..^ k + 1 k A sadd B sadd C k 0 ..^ k + 1
22 19 20 21 3bitr3g A 0 B 0 C 0 k 0 k A sadd B sadd C k 0 ..^ k + 1 k A sadd B sadd C k 0 ..^ k + 1
23 nn0uz 0 = 0
24 14 23 eleqtrdi A 0 B 0 C 0 k 0 k 0
25 eluzfz2 k 0 k 0 k
26 24 25 syl A 0 B 0 C 0 k 0 k 0 k
27 14 nn0zd A 0 B 0 C 0 k 0 k
28 fzval3 k 0 k = 0 ..^ k + 1
29 27 28 syl A 0 B 0 C 0 k 0 0 k = 0 ..^ k + 1
30 26 29 eleqtrd A 0 B 0 C 0 k 0 k 0 ..^ k + 1
31 30 biantrud A 0 B 0 C 0 k 0 k A sadd B sadd C k A sadd B sadd C k 0 ..^ k + 1
32 30 biantrud A 0 B 0 C 0 k 0 k A sadd B sadd C k A sadd B sadd C k 0 ..^ k + 1
33 22 31 32 3bitr4d A 0 B 0 C 0 k 0 k A sadd B sadd C k A sadd B sadd C
34 33 ex A 0 B 0 C 0 k 0 k A sadd B sadd C k A sadd B sadd C
35 4 10 34 pm5.21ndd A 0 B 0 C 0 k A sadd B sadd C k A sadd B sadd C
36 35 eqrdv A 0 B 0 C 0 A sadd B sadd C = A sadd B sadd C