Metamath Proof Explorer


Theorem saldifcl2

Description: The difference of two elements of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion saldifcl2 SSAlgESFSEFS

Proof

Step Hyp Ref Expression
1 indif2 ESF=ESF
2 1 a1i SSAlgESFSESF=ESF
3 elssuni ESES
4 df-ss ESES=E
5 3 4 sylib ESES=E
6 5 difeq1d ESESF=EF
7 6 3ad2ant2 SSAlgESFSESF=EF
8 2 7 eqtr2d SSAlgESFSEF=ESF
9 simp1 SSAlgESFSSSAlg
10 simp2 SSAlgESFSES
11 saldifcl SSAlgFSSFS
12 11 3adant2 SSAlgESFSSFS
13 salincl SSAlgESSFSESFS
14 9 10 12 13 syl3anc SSAlgESFSESFS
15 8 14 eqeltrd SSAlgESFSEFS