Metamath Proof Explorer


Theorem salexct2

Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct . (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salexct2.1 A=02
salexct2.2 S=x𝒫A|xωAxω
salexct2.3 B=01
Assertion salexct2 ¬BS

Proof

Step Hyp Ref Expression
1 salexct2.1 A=02
2 salexct2.2 S=x𝒫A|xωAxω
3 salexct2.3 B=01
4 0xr 0*
5 4 a1i 0*
6 1xr 1*
7 6 a1i 1*
8 0lt1 0<1
9 8 a1i 0<1
10 5 7 9 3 iccnct ¬Bω
11 10 mptru ¬Bω
12 2re 2
13 12 rexri 2*
14 13 a1i 2*
15 1lt2 1<2
16 15 a1i 1<2
17 eqid 12=12
18 7 14 16 17 iocnct ¬12ω
19 18 mptru ¬12ω
20 1 3 difeq12i AB=0201
21 5 7 9 xrltled 01
22 5 7 14 21 iccdificc 0201=12
23 22 mptru 0201=12
24 20 23 eqtri AB=12
25 24 breq1i ABω12ω
26 19 25 mtbir ¬ABω
27 11 26 pm3.2i ¬Bω¬ABω
28 ioran ¬BωABω¬Bω¬ABω
29 27 28 mpbir ¬BωABω
30 29 intnan ¬B𝒫ABωABω
31 breq1 x=BxωBω
32 difeq2 x=BAx=AB
33 32 breq1d x=BAxωABω
34 31 33 orbi12d x=BxωAxωBωABω
35 34 2 elrab2 BSB𝒫ABωABω
36 30 35 mtbir ¬BS