Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct . (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | salexct2.1 | |
|
salexct2.2 | |
||
salexct2.3 | |
||
Assertion | salexct2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salexct2.1 | |
|
2 | salexct2.2 | |
|
3 | salexct2.3 | |
|
4 | 0xr | |
|
5 | 4 | a1i | |
6 | 1xr | |
|
7 | 6 | a1i | |
8 | 0lt1 | |
|
9 | 8 | a1i | |
10 | 5 7 9 3 | iccnct | |
11 | 10 | mptru | |
12 | 2re | |
|
13 | 12 | rexri | |
14 | 13 | a1i | |
15 | 1lt2 | |
|
16 | 15 | a1i | |
17 | eqid | |
|
18 | 7 14 16 17 | iocnct | |
19 | 18 | mptru | |
20 | 1 3 | difeq12i | |
21 | 5 7 9 | xrltled | |
22 | 5 7 14 21 | iccdificc | |
23 | 22 | mptru | |
24 | 20 23 | eqtri | |
25 | 24 | breq1i | |
26 | 19 25 | mtbir | |
27 | 11 26 | pm3.2i | |
28 | ioran | |
|
29 | 27 28 | mpbir | |
30 | 29 | intnan | |
31 | breq1 | |
|
32 | difeq2 | |
|
33 | 32 | breq1d | |
34 | 31 33 | orbi12d | |
35 | 34 2 | elrab2 | |
36 | 30 35 | mtbir | |