Metamath Proof Explorer


Theorem salexct2

Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct . (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salexct2.1 A = 0 2
salexct2.2 S = x 𝒫 A | x ω A x ω
salexct2.3 B = 0 1
Assertion salexct2 ¬ B S

Proof

Step Hyp Ref Expression
1 salexct2.1 A = 0 2
2 salexct2.2 S = x 𝒫 A | x ω A x ω
3 salexct2.3 B = 0 1
4 0xr 0 *
5 4 a1i 0 *
6 1xr 1 *
7 6 a1i 1 *
8 0lt1 0 < 1
9 8 a1i 0 < 1
10 5 7 9 3 iccnct ¬ B ω
11 10 mptru ¬ B ω
12 2re 2
13 12 rexri 2 *
14 13 a1i 2 *
15 1lt2 1 < 2
16 15 a1i 1 < 2
17 eqid 1 2 = 1 2
18 7 14 16 17 iocnct ¬ 1 2 ω
19 18 mptru ¬ 1 2 ω
20 1 3 difeq12i A B = 0 2 0 1
21 5 7 9 xrltled 0 1
22 5 7 14 21 iccdificc 0 2 0 1 = 1 2
23 22 mptru 0 2 0 1 = 1 2
24 20 23 eqtri A B = 1 2
25 24 breq1i A B ω 1 2 ω
26 19 25 mtbir ¬ A B ω
27 11 26 pm3.2i ¬ B ω ¬ A B ω
28 ioran ¬ B ω A B ω ¬ B ω ¬ A B ω
29 27 28 mpbir ¬ B ω A B ω
30 29 intnan ¬ B 𝒫 A B ω A B ω
31 breq1 x = B x ω B ω
32 difeq2 x = B A x = A B
33 32 breq1d x = B A x ω A B ω
34 31 33 orbi12d x = B x ω A x ω B ω A B ω
35 34 2 elrab2 B S B 𝒫 A B ω A B ω
36 30 35 mtbir ¬ B S