Metamath Proof Explorer


Theorem salpreimaltle

Description: If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of Fremlin1 p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses salpreimaltle.x x φ
salpreimaltle.a a φ
salpreimaltle.s φ S SAlg
salpreimaltle.b φ x A B *
salpreimaltle.p φ a x A | B < a S
salpreimaltle.c φ C
Assertion salpreimaltle φ x A | B C S

Proof

Step Hyp Ref Expression
1 salpreimaltle.x x φ
2 salpreimaltle.a a φ
3 salpreimaltle.s φ S SAlg
4 salpreimaltle.b φ x A B *
5 salpreimaltle.p φ a x A | B < a S
6 salpreimaltle.c φ C
7 1 4 6 preimaleiinlt φ x A | B C = n x A | B < C + 1 n
8 nnct ω
9 8 a1i φ ω
10 nnn0
11 10 a1i φ
12 simpl φ n φ
13 simpl C n C
14 nnrecre n 1 n
15 14 adantl C n 1 n
16 13 15 readdcld C n C + 1 n
17 6 16 sylan φ n C + 1 n
18 nfv a C + 1 n
19 2 18 nfan a φ C + 1 n
20 nfv a x A | B < C + 1 n S
21 19 20 nfim a φ C + 1 n x A | B < C + 1 n S
22 ovex C + 1 n V
23 eleq1 a = C + 1 n a C + 1 n
24 23 anbi2d a = C + 1 n φ a φ C + 1 n
25 breq2 a = C + 1 n B < a B < C + 1 n
26 25 rabbidv a = C + 1 n x A | B < a = x A | B < C + 1 n
27 26 eleq1d a = C + 1 n x A | B < a S x A | B < C + 1 n S
28 24 27 imbi12d a = C + 1 n φ a x A | B < a S φ C + 1 n x A | B < C + 1 n S
29 21 22 28 5 vtoclf φ C + 1 n x A | B < C + 1 n S
30 12 17 29 syl2anc φ n x A | B < C + 1 n S
31 3 9 11 30 saliincl φ n x A | B < C + 1 n S
32 7 31 eqeltrd φ x A | B C S