Description: If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of Fremlin1 p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | salpreimaltle.x | |
|
salpreimaltle.a | |
||
salpreimaltle.s | |
||
salpreimaltle.b | |
||
salpreimaltle.p | |
||
salpreimaltle.c | |
||
Assertion | salpreimaltle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimaltle.x | |
|
2 | salpreimaltle.a | |
|
3 | salpreimaltle.s | |
|
4 | salpreimaltle.b | |
|
5 | salpreimaltle.p | |
|
6 | salpreimaltle.c | |
|
7 | 1 4 6 | preimaleiinlt | |
8 | nnct | |
|
9 | 8 | a1i | |
10 | nnn0 | |
|
11 | 10 | a1i | |
12 | simpl | |
|
13 | simpl | |
|
14 | nnrecre | |
|
15 | 14 | adantl | |
16 | 13 15 | readdcld | |
17 | 6 16 | sylan | |
18 | nfv | |
|
19 | 2 18 | nfan | |
20 | nfv | |
|
21 | 19 20 | nfim | |
22 | ovex | |
|
23 | eleq1 | |
|
24 | 23 | anbi2d | |
25 | breq2 | |
|
26 | 25 | rabbidv | |
27 | 26 | eleq1d | |
28 | 24 27 | imbi12d | |
29 | 21 22 28 5 | vtoclf | |
30 | 12 17 29 | syl2anc | |
31 | 3 9 11 30 | saliincl | |
32 | 7 31 | eqeltrd | |