Metamath Proof Explorer


Theorem salpreimaltle

Description: If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of Fremlin1 p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses salpreimaltle.x xφ
salpreimaltle.a aφ
salpreimaltle.s φSSAlg
salpreimaltle.b φxAB*
salpreimaltle.p φaxA|B<aS
salpreimaltle.c φC
Assertion salpreimaltle φxA|BCS

Proof

Step Hyp Ref Expression
1 salpreimaltle.x xφ
2 salpreimaltle.a aφ
3 salpreimaltle.s φSSAlg
4 salpreimaltle.b φxAB*
5 salpreimaltle.p φaxA|B<aS
6 salpreimaltle.c φC
7 1 4 6 preimaleiinlt φxA|BC=nxA|B<C+1n
8 nnct ω
9 8 a1i φω
10 nnn0
11 10 a1i φ
12 simpl φnφ
13 simpl CnC
14 nnrecre n1n
15 14 adantl Cn1n
16 13 15 readdcld CnC+1n
17 6 16 sylan φnC+1n
18 nfv aC+1n
19 2 18 nfan aφC+1n
20 nfv axA|B<C+1nS
21 19 20 nfim aφC+1nxA|B<C+1nS
22 ovex C+1nV
23 eleq1 a=C+1naC+1n
24 23 anbi2d a=C+1nφaφC+1n
25 breq2 a=C+1nB<aB<C+1n
26 25 rabbidv a=C+1nxA|B<a=xA|B<C+1n
27 26 eleq1d a=C+1nxA|B<aSxA|B<C+1nS
28 24 27 imbi12d a=C+1nφaxA|B<aSφC+1nxA|B<C+1nS
29 21 22 28 5 vtoclf φC+1nxA|B<C+1nS
30 12 17 29 syl2anc φnxA|B<C+1nS
31 3 9 11 30 saliincl φnxA|B<C+1nS
32 7 31 eqeltrd φxA|BCS