Metamath Proof Explorer


Theorem sbthlem2

Description: Lemma for sbth . (Contributed by NM, 22-Mar-1998)

Ref Expression
Hypotheses sbthlem.1 AV
sbthlem.2 D=x|xAgBfxAx
Assertion sbthlem2 rangAAgBfDD

Proof

Step Hyp Ref Expression
1 sbthlem.1 AV
2 sbthlem.2 D=x|xAgBfxAx
3 1 2 sbthlem1 DAgBfD
4 imass2 DAgBfDfDfAgBfD
5 sscon fDfAgBfDBfAgBfDBfD
6 3 4 5 mp2b BfAgBfDBfD
7 imass2 BfAgBfDBfDgBfAgBfDgBfD
8 sscon gBfAgBfDgBfDAgBfDAgBfAgBfD
9 6 7 8 mp2b AgBfDAgBfAgBfD
10 imassrn gBfAgBfDrang
11 sstr2 gBfAgBfDrangrangAgBfAgBfDA
12 10 11 ax-mp rangAgBfAgBfDA
13 difss AgBfDA
14 ssconb gBfAgBfDAAgBfDAgBfAgBfDAAgBfDAgBfDAgBfAgBfD
15 12 13 14 sylancl rangAgBfAgBfDAAgBfDAgBfDAgBfAgBfD
16 9 15 mpbiri rangAgBfAgBfDAAgBfD
17 16 13 jctil rangAAgBfDAgBfAgBfDAAgBfD
18 1 difexi AgBfDV
19 sseq1 x=AgBfDxAAgBfDA
20 imaeq2 x=AgBfDfx=fAgBfD
21 20 difeq2d x=AgBfDBfx=BfAgBfD
22 21 imaeq2d x=AgBfDgBfx=gBfAgBfD
23 difeq2 x=AgBfDAx=AAgBfD
24 22 23 sseq12d x=AgBfDgBfxAxgBfAgBfDAAgBfD
25 19 24 anbi12d x=AgBfDxAgBfxAxAgBfDAgBfAgBfDAAgBfD
26 18 25 elab AgBfDx|xAgBfxAxAgBfDAgBfAgBfDAAgBfD
27 17 26 sylibr rangAAgBfDx|xAgBfxAx
28 27 2 eleqtrrdi rangAAgBfDD
29 elssuni AgBfDDAgBfDD
30 28 29 syl rangAAgBfDD