Metamath Proof Explorer


Theorem scmatid

Description: The identity matrix is a scalar matrix. (Contributed by AV, 20-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses scmatid.a A = N Mat R
scmatid.b B = Base A
scmatid.e E = Base R
scmatid.0 0 ˙ = 0 R
scmatid.s S = N ScMat R
Assertion scmatid N Fin R Ring 1 A S

Proof

Step Hyp Ref Expression
1 scmatid.a A = N Mat R
2 scmatid.b B = Base A
3 scmatid.e E = Base R
4 scmatid.0 0 ˙ = 0 R
5 scmatid.s S = N ScMat R
6 1 matring N Fin R Ring A Ring
7 eqid 1 A = 1 A
8 2 7 ringidcl A Ring 1 A B
9 6 8 syl N Fin R Ring 1 A B
10 1 matsca2 N Fin R Ring R = Scalar A
11 10 eqcomd N Fin R Ring Scalar A = R
12 11 fveq2d N Fin R Ring 1 Scalar A = 1 R
13 eqid Base R = Base R
14 eqid 1 R = 1 R
15 13 14 ringidcl R Ring 1 R Base R
16 15 adantl N Fin R Ring 1 R Base R
17 12 16 eqeltrd N Fin R Ring 1 Scalar A Base R
18 oveq1 c = 1 Scalar A c A 1 A = 1 Scalar A A 1 A
19 18 eqeq2d c = 1 Scalar A 1 A = c A 1 A 1 A = 1 Scalar A A 1 A
20 19 adantl N Fin R Ring c = 1 Scalar A 1 A = c A 1 A 1 A = 1 Scalar A A 1 A
21 1 matlmod N Fin R Ring A LMod
22 eqid Scalar A = Scalar A
23 eqid A = A
24 eqid 1 Scalar A = 1 Scalar A
25 2 22 23 24 lmodvs1 A LMod 1 A B 1 Scalar A A 1 A = 1 A
26 21 9 25 syl2anc N Fin R Ring 1 Scalar A A 1 A = 1 A
27 26 eqcomd N Fin R Ring 1 A = 1 Scalar A A 1 A
28 17 20 27 rspcedvd N Fin R Ring c Base R 1 A = c A 1 A
29 13 1 2 7 23 5 scmatel N Fin R Ring 1 A S 1 A B c Base R 1 A = c A 1 A
30 9 28 29 mpbir2and N Fin R Ring 1 A S