Metamath Proof Explorer


Theorem scmatid

Description: The identity matrix is a scalar matrix. (Contributed by AV, 20-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses scmatid.a A=NMatR
scmatid.b B=BaseA
scmatid.e E=BaseR
scmatid.0 0˙=0R
scmatid.s S=NScMatR
Assertion scmatid NFinRRing1AS

Proof

Step Hyp Ref Expression
1 scmatid.a A=NMatR
2 scmatid.b B=BaseA
3 scmatid.e E=BaseR
4 scmatid.0 0˙=0R
5 scmatid.s S=NScMatR
6 1 matring NFinRRingARing
7 eqid 1A=1A
8 2 7 ringidcl ARing1AB
9 6 8 syl NFinRRing1AB
10 1 matsca2 NFinRRingR=ScalarA
11 10 eqcomd NFinRRingScalarA=R
12 11 fveq2d NFinRRing1ScalarA=1R
13 eqid BaseR=BaseR
14 eqid 1R=1R
15 13 14 ringidcl RRing1RBaseR
16 15 adantl NFinRRing1RBaseR
17 12 16 eqeltrd NFinRRing1ScalarABaseR
18 oveq1 c=1ScalarAcA1A=1ScalarAA1A
19 18 eqeq2d c=1ScalarA1A=cA1A1A=1ScalarAA1A
20 19 adantl NFinRRingc=1ScalarA1A=cA1A1A=1ScalarAA1A
21 1 matlmod NFinRRingALMod
22 eqid ScalarA=ScalarA
23 eqid A=A
24 eqid 1ScalarA=1ScalarA
25 2 22 23 24 lmodvs1 ALMod1AB1ScalarAA1A=1A
26 21 9 25 syl2anc NFinRRing1ScalarAA1A=1A
27 26 eqcomd NFinRRing1A=1ScalarAA1A
28 17 20 27 rspcedvd NFinRRingcBaseR1A=cA1A
29 13 1 2 7 23 5 scmatel NFinRRing1AS1ABcBaseR1A=cA1A
30 9 28 29 mpbir2and NFinRRing1AS