Metamath Proof Explorer


Theorem sdom2en01

Description: A set with less than two elements has 0 or 1. (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Assertion sdom2en01 A2𝑜A=A1𝑜

Proof

Step Hyp Ref Expression
1 onfin2 ω=OnFin
2 inss2 OnFinFin
3 1 2 eqsstri ωFin
4 2onn 2𝑜ω
5 3 4 sselii 2𝑜Fin
6 sdomdom A2𝑜A2𝑜
7 domfi 2𝑜FinA2𝑜AFin
8 5 6 7 sylancr A2𝑜AFin
9 id A=A=
10 0fin Fin
11 9 10 eqeltrdi A=AFin
12 1onn 1𝑜ω
13 3 12 sselii 1𝑜Fin
14 enfi A1𝑜AFin1𝑜Fin
15 13 14 mpbiri A1𝑜AFin
16 11 15 jaoi A=A1𝑜AFin
17 df2o3 2𝑜=1𝑜
18 17 eleq2i cardA2𝑜cardA1𝑜
19 fvex cardAV
20 19 elpr cardA1𝑜cardA=cardA=1𝑜
21 18 20 bitri cardA2𝑜cardA=cardA=1𝑜
22 21 a1i AFincardA2𝑜cardA=cardA=1𝑜
23 cardnn 2𝑜ωcard2𝑜=2𝑜
24 4 23 ax-mp card2𝑜=2𝑜
25 24 eleq2i cardAcard2𝑜cardA2𝑜
26 finnum AFinAdomcard
27 2on 2𝑜On
28 onenon 2𝑜On2𝑜domcard
29 27 28 ax-mp 2𝑜domcard
30 cardsdom2 Adomcard2𝑜domcardcardAcard2𝑜A2𝑜
31 26 29 30 sylancl AFincardAcard2𝑜A2𝑜
32 25 31 bitr3id AFincardA2𝑜A2𝑜
33 cardnueq0 AdomcardcardA=A=
34 26 33 syl AFincardA=A=
35 cardnn 1𝑜ωcard1𝑜=1𝑜
36 12 35 ax-mp card1𝑜=1𝑜
37 36 eqeq2i cardA=card1𝑜cardA=1𝑜
38 finnum 1𝑜Fin1𝑜domcard
39 13 38 ax-mp 1𝑜domcard
40 carden2 Adomcard1𝑜domcardcardA=card1𝑜A1𝑜
41 26 39 40 sylancl AFincardA=card1𝑜A1𝑜
42 37 41 bitr3id AFincardA=1𝑜A1𝑜
43 34 42 orbi12d AFincardA=cardA=1𝑜A=A1𝑜
44 22 32 43 3bitr3d AFinA2𝑜A=A1𝑜
45 8 16 44 pm5.21nii A2𝑜A=A1𝑜