Metamath Proof Explorer


Theorem selvcllemh

Description: Apply the third argument ( selvcllem3 ) to show that Q is a (ring) homomorphism. (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses selvcllemh.u U=IJmPolyR
selvcllemh.t T=JmPolyU
selvcllemh.c C=algScT
selvcllemh.d D=CalgScU
selvcllemh.q Q=IevalSubTranD
selvcllemh.w W=ImPolyS
selvcllemh.s S=T𝑠ranD
selvcllemh.x X=T𝑠BI
selvcllemh.b B=BaseT
selvcllemh.i φIV
selvcllemh.r φRCRing
selvcllemh.j φJI
Assertion selvcllemh φQWRingHomX

Proof

Step Hyp Ref Expression
1 selvcllemh.u U=IJmPolyR
2 selvcllemh.t T=JmPolyU
3 selvcllemh.c C=algScT
4 selvcllemh.d D=CalgScU
5 selvcllemh.q Q=IevalSubTranD
6 selvcllemh.w W=ImPolyS
7 selvcllemh.s S=T𝑠ranD
8 selvcllemh.x X=T𝑠BI
9 selvcllemh.b B=BaseT
10 selvcllemh.i φIV
11 selvcllemh.r φRCRing
12 selvcllemh.j φJI
13 10 12 ssexd φJV
14 10 difexd φIJV
15 1 mplcrng IJVRCRingUCRing
16 14 11 15 syl2anc φUCRing
17 2 mplcrng JVUCRingTCRing
18 13 16 17 syl2anc φTCRing
19 1 2 3 4 14 13 11 selvcllem3 φranDSubRingT
20 5 6 7 8 9 evlsrhm IVTCRingranDSubRingTQWRingHomX
21 10 18 19 20 syl3anc φQWRingHomX