Description: Apply the third argument ( selvcllem3 ) to show that Q is a (ring) homomorphism. (Contributed by SN, 5-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | selvcllemh.u | |
|
selvcllemh.t | |
||
selvcllemh.c | |
||
selvcllemh.d | |
||
selvcllemh.q | |
||
selvcllemh.w | |
||
selvcllemh.s | |
||
selvcllemh.x | |
||
selvcllemh.b | |
||
selvcllemh.i | |
||
selvcllemh.r | |
||
selvcllemh.j | |
||
Assertion | selvcllemh | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvcllemh.u | |
|
2 | selvcllemh.t | |
|
3 | selvcllemh.c | |
|
4 | selvcllemh.d | |
|
5 | selvcllemh.q | |
|
6 | selvcllemh.w | |
|
7 | selvcllemh.s | |
|
8 | selvcllemh.x | |
|
9 | selvcllemh.b | |
|
10 | selvcllemh.i | |
|
11 | selvcllemh.r | |
|
12 | selvcllemh.j | |
|
13 | 10 12 | ssexd | |
14 | 10 | difexd | |
15 | 1 | mplcrng | |
16 | 14 11 15 | syl2anc | |
17 | 2 | mplcrng | |
18 | 13 16 17 | syl2anc | |
19 | 1 2 3 4 14 13 11 | selvcllem3 | |
20 | 5 6 7 8 9 | evlsrhm | |
21 | 10 18 19 20 | syl3anc | |