Metamath Proof Explorer


Theorem seposep

Description: If two sets are separated by (open) neighborhoods, then they are separated subsets of the underlying set. Note that separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. See sepnsepo . The relationship between separatedness and closure is also seen in isnrm , isnrm2 , isnrm3 . (Contributed by Zhi Wang, 7-Sep-2024)

Ref Expression
Hypotheses sepdisj.1 φJTop
seposep.2 φnJmJSnTmnm=
Assertion seposep φSJTJSclsJT=clsJST=

Proof

Step Hyp Ref Expression
1 sepdisj.1 φJTop
2 seposep.2 φnJmJSnTmnm=
3 simp31 JTopnJmJSnTmnm=Sn
4 simp1 JTopnJmJSnTmnm=JTop
5 simp2l JTopnJmJSnTmnm=nJ
6 eqid J=J
7 6 eltopss JTopnJnJ
8 4 5 7 syl2anc JTopnJmJSnTmnm=nJ
9 3 8 sstrd JTopnJmJSnTmnm=SJ
10 simp32 JTopnJmJSnTmnm=Tm
11 simp2r JTopnJmJSnTmnm=mJ
12 6 eltopss JTopmJmJ
13 4 11 12 syl2anc JTopnJmJSnTmnm=mJ
14 10 13 sstrd JTopnJmJSnTmnm=TJ
15 6 opncld JTopnJJnClsdJ
16 4 5 15 syl2anc JTopnJmJSnTmnm=JnClsdJ
17 incom nm=mn
18 simp33 JTopnJmJSnTmnm=nm=
19 17 18 eqtr3id JTopnJmJSnTmnm=mn=
20 reldisj mJmn=mJn
21 20 biimpd mJmn=mJn
22 13 19 21 sylc JTopnJmJSnTmnm=mJn
23 10 22 sstrd JTopnJmJSnTmnm=TJn
24 6 clsss2 JnClsdJTJnclsJTJn
25 16 23 24 syl2anc JTopnJmJSnTmnm=clsJTJn
26 3 sscond JTopnJmJSnTmnm=JnJS
27 25 26 sstrd JTopnJmJSnTmnm=clsJTJS
28 disjdif SJS=
29 28 a1i JTopnJmJSnTmnm=SJS=
30 27 29 ssdisjdr JTopnJmJSnTmnm=SclsJT=
31 6 opncld JTopmJJmClsdJ
32 4 11 31 syl2anc JTopnJmJSnTmnm=JmClsdJ
33 reldisj nJnm=nJm
34 33 biimpd nJnm=nJm
35 8 18 34 sylc JTopnJmJSnTmnm=nJm
36 3 35 sstrd JTopnJmJSnTmnm=SJm
37 6 clsss2 JmClsdJSJmclsJSJm
38 32 36 37 syl2anc JTopnJmJSnTmnm=clsJSJm
39 10 sscond JTopnJmJSnTmnm=JmJT
40 38 39 sstrd JTopnJmJSnTmnm=clsJSJT
41 disjdifr JTT=
42 41 a1i JTopnJmJSnTmnm=JTT=
43 40 42 ssdisjd JTopnJmJSnTmnm=clsJST=
44 30 43 jca JTopnJmJSnTmnm=SclsJT=clsJST=
45 9 14 44 jca31 JTopnJmJSnTmnm=SJTJSclsJT=clsJST=
46 45 3exp JTopnJmJSnTmnm=SJTJSclsJT=clsJST=
47 46 rexlimdvv JTopnJmJSnTmnm=SJTJSclsJT=clsJST=
48 1 2 47 sylc φSJTJSclsJT=clsJST=