| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sepdisj.1 |
|
| 2 |
|
seposep.2 |
|
| 3 |
|
simp31 |
|
| 4 |
|
simp1 |
|
| 5 |
|
simp2l |
|
| 6 |
|
eqid |
|
| 7 |
6
|
eltopss |
|
| 8 |
4 5 7
|
syl2anc |
|
| 9 |
3 8
|
sstrd |
|
| 10 |
|
simp32 |
|
| 11 |
|
simp2r |
|
| 12 |
6
|
eltopss |
|
| 13 |
4 11 12
|
syl2anc |
|
| 14 |
10 13
|
sstrd |
|
| 15 |
6
|
opncld |
|
| 16 |
4 5 15
|
syl2anc |
|
| 17 |
|
incom |
|
| 18 |
|
simp33 |
|
| 19 |
17 18
|
eqtr3id |
|
| 20 |
|
reldisj |
|
| 21 |
20
|
biimpd |
|
| 22 |
13 19 21
|
sylc |
|
| 23 |
10 22
|
sstrd |
|
| 24 |
6
|
clsss2 |
|
| 25 |
16 23 24
|
syl2anc |
|
| 26 |
3
|
sscond |
|
| 27 |
25 26
|
sstrd |
|
| 28 |
|
disjdif |
|
| 29 |
28
|
a1i |
|
| 30 |
27 29
|
ssdisjdr |
|
| 31 |
6
|
opncld |
|
| 32 |
4 11 31
|
syl2anc |
|
| 33 |
|
reldisj |
|
| 34 |
33
|
biimpd |
|
| 35 |
8 18 34
|
sylc |
|
| 36 |
3 35
|
sstrd |
|
| 37 |
6
|
clsss2 |
|
| 38 |
32 36 37
|
syl2anc |
|
| 39 |
10
|
sscond |
|
| 40 |
38 39
|
sstrd |
|
| 41 |
|
disjdifr |
|
| 42 |
41
|
a1i |
|
| 43 |
40 42
|
ssdisjd |
|
| 44 |
30 43
|
jca |
|
| 45 |
9 14 44
|
jca31 |
|
| 46 |
45
|
3exp |
|
| 47 |
46
|
rexlimdvv |
|
| 48 |
1 2 47
|
sylc |
|