Step |
Hyp |
Ref |
Expression |
1 |
|
sepdisj.1 |
|
2 |
|
seposep.2 |
|
3 |
|
simp31 |
|
4 |
|
simp1 |
|
5 |
|
simp2l |
|
6 |
|
eqid |
|
7 |
6
|
eltopss |
|
8 |
4 5 7
|
syl2anc |
|
9 |
3 8
|
sstrd |
|
10 |
|
simp32 |
|
11 |
|
simp2r |
|
12 |
6
|
eltopss |
|
13 |
4 11 12
|
syl2anc |
|
14 |
10 13
|
sstrd |
|
15 |
6
|
opncld |
|
16 |
4 5 15
|
syl2anc |
|
17 |
|
incom |
|
18 |
|
simp33 |
|
19 |
17 18
|
eqtr3id |
|
20 |
|
reldisj |
|
21 |
20
|
biimpd |
|
22 |
13 19 21
|
sylc |
|
23 |
10 22
|
sstrd |
|
24 |
6
|
clsss2 |
|
25 |
16 23 24
|
syl2anc |
|
26 |
3
|
sscond |
|
27 |
25 26
|
sstrd |
|
28 |
|
disjdif |
|
29 |
28
|
a1i |
|
30 |
27 29
|
ssdisjdr |
|
31 |
6
|
opncld |
|
32 |
4 11 31
|
syl2anc |
|
33 |
|
reldisj |
|
34 |
33
|
biimpd |
|
35 |
8 18 34
|
sylc |
|
36 |
3 35
|
sstrd |
|
37 |
6
|
clsss2 |
|
38 |
32 36 37
|
syl2anc |
|
39 |
10
|
sscond |
|
40 |
38 39
|
sstrd |
|
41 |
|
disjdifr |
|
42 |
41
|
a1i |
|
43 |
40 42
|
ssdisjd |
|
44 |
30 43
|
jca |
|
45 |
9 14 44
|
jca31 |
|
46 |
45
|
3exp |
|
47 |
46
|
rexlimdvv |
|
48 |
1 2 47
|
sylc |
|