Metamath Proof Explorer


Theorem seposep

Description: If two sets are separated by (open) neighborhoods, then they are separated subsets of the underlying set. Note that separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. See sepnsepo . The relationship between separatedness and closure is also seen in isnrm , isnrm2 , isnrm3 . (Contributed by Zhi Wang, 7-Sep-2024)

Ref Expression
Hypotheses sepdisj.1 φ J Top
seposep.2 φ n J m J S n T m n m =
Assertion seposep φ S J T J S cls J T = cls J S T =

Proof

Step Hyp Ref Expression
1 sepdisj.1 φ J Top
2 seposep.2 φ n J m J S n T m n m =
3 simp31 J Top n J m J S n T m n m = S n
4 simp1 J Top n J m J S n T m n m = J Top
5 simp2l J Top n J m J S n T m n m = n J
6 eqid J = J
7 6 eltopss J Top n J n J
8 4 5 7 syl2anc J Top n J m J S n T m n m = n J
9 3 8 sstrd J Top n J m J S n T m n m = S J
10 simp32 J Top n J m J S n T m n m = T m
11 simp2r J Top n J m J S n T m n m = m J
12 6 eltopss J Top m J m J
13 4 11 12 syl2anc J Top n J m J S n T m n m = m J
14 10 13 sstrd J Top n J m J S n T m n m = T J
15 6 opncld J Top n J J n Clsd J
16 4 5 15 syl2anc J Top n J m J S n T m n m = J n Clsd J
17 incom n m = m n
18 simp33 J Top n J m J S n T m n m = n m =
19 17 18 eqtr3id J Top n J m J S n T m n m = m n =
20 reldisj m J m n = m J n
21 20 biimpd m J m n = m J n
22 13 19 21 sylc J Top n J m J S n T m n m = m J n
23 10 22 sstrd J Top n J m J S n T m n m = T J n
24 6 clsss2 J n Clsd J T J n cls J T J n
25 16 23 24 syl2anc J Top n J m J S n T m n m = cls J T J n
26 3 sscond J Top n J m J S n T m n m = J n J S
27 25 26 sstrd J Top n J m J S n T m n m = cls J T J S
28 disjdif S J S =
29 28 a1i J Top n J m J S n T m n m = S J S =
30 27 29 ssdisjdr J Top n J m J S n T m n m = S cls J T =
31 6 opncld J Top m J J m Clsd J
32 4 11 31 syl2anc J Top n J m J S n T m n m = J m Clsd J
33 reldisj n J n m = n J m
34 33 biimpd n J n m = n J m
35 8 18 34 sylc J Top n J m J S n T m n m = n J m
36 3 35 sstrd J Top n J m J S n T m n m = S J m
37 6 clsss2 J m Clsd J S J m cls J S J m
38 32 36 37 syl2anc J Top n J m J S n T m n m = cls J S J m
39 10 sscond J Top n J m J S n T m n m = J m J T
40 38 39 sstrd J Top n J m J S n T m n m = cls J S J T
41 disjdifr J T T =
42 41 a1i J Top n J m J S n T m n m = J T T =
43 40 42 ssdisjd J Top n J m J S n T m n m = cls J S T =
44 30 43 jca J Top n J m J S n T m n m = S cls J T = cls J S T =
45 9 14 44 jca31 J Top n J m J S n T m n m = S J T J S cls J T = cls J S T =
46 45 3exp J Top n J m J S n T m n m = S J T J S cls J T = cls J S T =
47 46 rexlimdvv J Top n J m J S n T m n m = S J T J S cls J T = cls J S T =
48 1 2 47 sylc φ S J T J S cls J T = cls J S T =