| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sepdisj.1 |  | 
						
							| 2 |  | seposep.2 |  | 
						
							| 3 |  | simp31 |  | 
						
							| 4 |  | simp1 |  | 
						
							| 5 |  | simp2l |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 6 | eltopss |  | 
						
							| 8 | 4 5 7 | syl2anc |  | 
						
							| 9 | 3 8 | sstrd |  | 
						
							| 10 |  | simp32 |  | 
						
							| 11 |  | simp2r |  | 
						
							| 12 | 6 | eltopss |  | 
						
							| 13 | 4 11 12 | syl2anc |  | 
						
							| 14 | 10 13 | sstrd |  | 
						
							| 15 | 6 | opncld |  | 
						
							| 16 | 4 5 15 | syl2anc |  | 
						
							| 17 |  | incom |  | 
						
							| 18 |  | simp33 |  | 
						
							| 19 | 17 18 | eqtr3id |  | 
						
							| 20 |  | reldisj |  | 
						
							| 21 | 20 | biimpd |  | 
						
							| 22 | 13 19 21 | sylc |  | 
						
							| 23 | 10 22 | sstrd |  | 
						
							| 24 | 6 | clsss2 |  | 
						
							| 25 | 16 23 24 | syl2anc |  | 
						
							| 26 | 3 | sscond |  | 
						
							| 27 | 25 26 | sstrd |  | 
						
							| 28 |  | disjdif |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 | 27 29 | ssdisjdr |  | 
						
							| 31 | 6 | opncld |  | 
						
							| 32 | 4 11 31 | syl2anc |  | 
						
							| 33 |  | reldisj |  | 
						
							| 34 | 33 | biimpd |  | 
						
							| 35 | 8 18 34 | sylc |  | 
						
							| 36 | 3 35 | sstrd |  | 
						
							| 37 | 6 | clsss2 |  | 
						
							| 38 | 32 36 37 | syl2anc |  | 
						
							| 39 | 10 | sscond |  | 
						
							| 40 | 38 39 | sstrd |  | 
						
							| 41 |  | disjdifr |  | 
						
							| 42 | 41 | a1i |  | 
						
							| 43 | 40 42 | ssdisjd |  | 
						
							| 44 | 30 43 | jca |  | 
						
							| 45 | 9 14 44 | jca31 |  | 
						
							| 46 | 45 | 3exp |  | 
						
							| 47 | 46 | rexlimdvv |  | 
						
							| 48 | 1 2 47 | sylc |  |