Description: If two sets are separated by (open) neighborhoods, then they are separated subsets of the underlying set. Note that separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. See sepnsepo . The relationship between separatedness and closure is also seen in isnrm , isnrm2 , isnrm3 . (Contributed by Zhi Wang, 7-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sepdisj.1 | |
|
seposep.2 | |
||
Assertion | seposep | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sepdisj.1 | |
|
2 | seposep.2 | |
|
3 | simp31 | |
|
4 | simp1 | |
|
5 | simp2l | |
|
6 | eqid | |
|
7 | 6 | eltopss | |
8 | 4 5 7 | syl2anc | |
9 | 3 8 | sstrd | |
10 | simp32 | |
|
11 | simp2r | |
|
12 | 6 | eltopss | |
13 | 4 11 12 | syl2anc | |
14 | 10 13 | sstrd | |
15 | 6 | opncld | |
16 | 4 5 15 | syl2anc | |
17 | incom | |
|
18 | simp33 | |
|
19 | 17 18 | eqtr3id | |
20 | reldisj | |
|
21 | 20 | biimpd | |
22 | 13 19 21 | sylc | |
23 | 10 22 | sstrd | |
24 | 6 | clsss2 | |
25 | 16 23 24 | syl2anc | |
26 | 3 | sscond | |
27 | 25 26 | sstrd | |
28 | disjdif | |
|
29 | 28 | a1i | |
30 | 27 29 | ssdisjdr | |
31 | 6 | opncld | |
32 | 4 11 31 | syl2anc | |
33 | reldisj | |
|
34 | 33 | biimpd | |
35 | 8 18 34 | sylc | |
36 | 3 35 | sstrd | |
37 | 6 | clsss2 | |
38 | 32 36 37 | syl2anc | |
39 | 10 | sscond | |
40 | 38 39 | sstrd | |
41 | disjdifr | |
|
42 | 41 | a1i | |
43 | 40 42 | ssdisjd | |
44 | 30 43 | jca | |
45 | 9 14 44 | jca31 | |
46 | 45 | 3exp | |
47 | 46 | rexlimdvv | |
48 | 1 2 47 | sylc | |