Metamath Proof Explorer


Theorem setcsect

Description: A section in the category of sets, written out. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setcmon.c C=SetCatU
setcmon.u φUV
setcmon.x φXU
setcmon.y φYU
setcsect.n S=SectC
Assertion setcsect φFXSYGF:XYG:YXGF=IX

Proof

Step Hyp Ref Expression
1 setcmon.c C=SetCatU
2 setcmon.u φUV
3 setcmon.x φXU
4 setcmon.y φYU
5 setcsect.n S=SectC
6 eqid BaseC=BaseC
7 eqid HomC=HomC
8 eqid compC=compC
9 eqid IdC=IdC
10 1 setccat UVCCat
11 2 10 syl φCCat
12 1 2 setcbas φU=BaseC
13 3 12 eleqtrd φXBaseC
14 4 12 eleqtrd φYBaseC
15 6 7 8 9 5 11 13 14 issect φFXSYGFXHomCYGYHomCXGXYcompCXF=IdCX
16 1 2 7 3 4 elsetchom φFXHomCYF:XY
17 1 2 7 4 3 elsetchom φGYHomCXG:YX
18 16 17 anbi12d φFXHomCYGYHomCXF:XYG:YX
19 18 anbi1d φFXHomCYGYHomCXGXYcompCXF=IdCXF:XYG:YXGXYcompCXF=IdCX
20 2 adantr φF:XYG:YXUV
21 3 adantr φF:XYG:YXXU
22 4 adantr φF:XYG:YXYU
23 simprl φF:XYG:YXF:XY
24 simprr φF:XYG:YXG:YX
25 1 20 8 21 22 21 23 24 setcco φF:XYG:YXGXYcompCXF=GF
26 1 9 2 3 setcid φIdCX=IX
27 26 adantr φF:XYG:YXIdCX=IX
28 25 27 eqeq12d φF:XYG:YXGXYcompCXF=IdCXGF=IX
29 28 pm5.32da φF:XYG:YXGXYcompCXF=IdCXF:XYG:YXGF=IX
30 19 29 bitrd φFXHomCYGYHomCXGXYcompCXF=IdCXF:XYG:YXGF=IX
31 df-3an FXHomCYGYHomCXGXYcompCXF=IdCXFXHomCYGYHomCXGXYcompCXF=IdCX
32 df-3an F:XYG:YXGF=IXF:XYG:YXGF=IX
33 30 31 32 3bitr4g φFXHomCYGYHomCXGXYcompCXF=IdCXF:XYG:YXGF=IX
34 15 33 bitrd φFXSYGF:XYG:YXGF=IX