Description: An inverse in the category of sets is the converse operation. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | setcmon.c | |
|
setcmon.u | |
||
setcmon.x | |
||
setcmon.y | |
||
setcinv.n | |
||
Assertion | setcinv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setcmon.c | |
|
2 | setcmon.u | |
|
3 | setcmon.x | |
|
4 | setcmon.y | |
|
5 | setcinv.n | |
|
6 | eqid | |
|
7 | 1 | setccat | |
8 | 2 7 | syl | |
9 | 1 2 | setcbas | |
10 | 3 9 | eleqtrd | |
11 | 4 9 | eleqtrd | |
12 | eqid | |
|
13 | 6 5 8 10 11 12 | isinv | |
14 | 1 2 3 4 12 | setcsect | |
15 | df-3an | |
|
16 | 14 15 | bitrdi | |
17 | 1 2 4 3 12 | setcsect | |
18 | 3ancoma | |
|
19 | df-3an | |
|
20 | 18 19 | bitri | |
21 | 17 20 | bitrdi | |
22 | 16 21 | anbi12d | |
23 | anandi | |
|
24 | 22 23 | bitr4di | |
25 | fcof1o | |
|
26 | eqcom | |
|
27 | 26 | anbi2i | |
28 | 25 27 | sylib | |
29 | 28 | ancom2s | |
30 | 29 | adantl | |
31 | f1of | |
|
32 | 31 | ad2antrl | |
33 | f1ocnv | |
|
34 | 33 | ad2antrl | |
35 | f1oeq1 | |
|
36 | 35 | ad2antll | |
37 | 34 36 | mpbird | |
38 | f1of | |
|
39 | 37 38 | syl | |
40 | simprr | |
|
41 | 40 | coeq1d | |
42 | f1ococnv1 | |
|
43 | 42 | ad2antrl | |
44 | 41 43 | eqtrd | |
45 | 40 | coeq2d | |
46 | f1ococnv2 | |
|
47 | 46 | ad2antrl | |
48 | 45 47 | eqtrd | |
49 | 44 48 | jca | |
50 | 32 39 49 | jca31 | |
51 | 30 50 | impbida | |
52 | 13 24 51 | 3bitrd | |