Metamath Proof Explorer


Theorem setcinv

Description: An inverse in the category of sets is the converse operation. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setcmon.c C=SetCatU
setcmon.u φUV
setcmon.x φXU
setcmon.y φYU
setcinv.n N=InvC
Assertion setcinv φFXNYGF:X1-1 ontoYG=F-1

Proof

Step Hyp Ref Expression
1 setcmon.c C=SetCatU
2 setcmon.u φUV
3 setcmon.x φXU
4 setcmon.y φYU
5 setcinv.n N=InvC
6 eqid BaseC=BaseC
7 1 setccat UVCCat
8 2 7 syl φCCat
9 1 2 setcbas φU=BaseC
10 3 9 eleqtrd φXBaseC
11 4 9 eleqtrd φYBaseC
12 eqid SectC=SectC
13 6 5 8 10 11 12 isinv φFXNYGFXSectCYGGYSectCXF
14 1 2 3 4 12 setcsect φFXSectCYGF:XYG:YXGF=IX
15 df-3an F:XYG:YXGF=IXF:XYG:YXGF=IX
16 14 15 bitrdi φFXSectCYGF:XYG:YXGF=IX
17 1 2 4 3 12 setcsect φGYSectCXFG:YXF:XYFG=IY
18 3ancoma G:YXF:XYFG=IYF:XYG:YXFG=IY
19 df-3an F:XYG:YXFG=IYF:XYG:YXFG=IY
20 18 19 bitri G:YXF:XYFG=IYF:XYG:YXFG=IY
21 17 20 bitrdi φGYSectCXFF:XYG:YXFG=IY
22 16 21 anbi12d φFXSectCYGGYSectCXFF:XYG:YXGF=IXF:XYG:YXFG=IY
23 anandi F:XYG:YXGF=IXFG=IYF:XYG:YXGF=IXF:XYG:YXFG=IY
24 22 23 bitr4di φFXSectCYGGYSectCXFF:XYG:YXGF=IXFG=IY
25 fcof1o F:XYG:YXFG=IYGF=IXF:X1-1 ontoYF-1=G
26 eqcom F-1=GG=F-1
27 26 anbi2i F:X1-1 ontoYF-1=GF:X1-1 ontoYG=F-1
28 25 27 sylib F:XYG:YXFG=IYGF=IXF:X1-1 ontoYG=F-1
29 28 ancom2s F:XYG:YXGF=IXFG=IYF:X1-1 ontoYG=F-1
30 29 adantl φF:XYG:YXGF=IXFG=IYF:X1-1 ontoYG=F-1
31 f1of F:X1-1 ontoYF:XY
32 31 ad2antrl φF:X1-1 ontoYG=F-1F:XY
33 f1ocnv F:X1-1 ontoYF-1:Y1-1 ontoX
34 33 ad2antrl φF:X1-1 ontoYG=F-1F-1:Y1-1 ontoX
35 f1oeq1 G=F-1G:Y1-1 ontoXF-1:Y1-1 ontoX
36 35 ad2antll φF:X1-1 ontoYG=F-1G:Y1-1 ontoXF-1:Y1-1 ontoX
37 34 36 mpbird φF:X1-1 ontoYG=F-1G:Y1-1 ontoX
38 f1of G:Y1-1 ontoXG:YX
39 37 38 syl φF:X1-1 ontoYG=F-1G:YX
40 simprr φF:X1-1 ontoYG=F-1G=F-1
41 40 coeq1d φF:X1-1 ontoYG=F-1GF=F-1F
42 f1ococnv1 F:X1-1 ontoYF-1F=IX
43 42 ad2antrl φF:X1-1 ontoYG=F-1F-1F=IX
44 41 43 eqtrd φF:X1-1 ontoYG=F-1GF=IX
45 40 coeq2d φF:X1-1 ontoYG=F-1FG=FF-1
46 f1ococnv2 F:X1-1 ontoYFF-1=IY
47 46 ad2antrl φF:X1-1 ontoYG=F-1FF-1=IY
48 45 47 eqtrd φF:X1-1 ontoYG=F-1FG=IY
49 44 48 jca φF:X1-1 ontoYG=F-1GF=IXFG=IY
50 32 39 49 jca31 φF:X1-1 ontoYG=F-1F:XYG:YXGF=IXFG=IY
51 30 50 impbida φF:XYG:YXGF=IXFG=IYF:X1-1 ontoYG=F-1
52 13 24 51 3bitrd φFXNYGF:X1-1 ontoYG=F-1