Description: Set induction for sets contained in a transitive set. If we are allowed to assume Infinity, then all sets have a transitive closure and this reduces to setind ; however, this version is useful without Infinity. (Contributed by Stefan O'Rear, 28-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | setindtr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |
|
2 | nfa1 | |
|
3 | 1 2 | nfan | |
4 | eldifn | |
|
5 | 4 | adantl | |
6 | trss | |
|
7 | eldifi | |
|
8 | 6 7 | impel | |
9 | df-ss | |
|
10 | 8 9 | sylib | |
11 | 10 | adantlr | |
12 | 11 | sseq1d | |
13 | sp | |
|
14 | 13 | ad2antlr | |
15 | 12 14 | sylbid | |
16 | 5 15 | mtod | |
17 | inssdif0 | |
|
18 | 16 17 | sylnib | |
19 | 18 | ex | |
20 | 3 19 | ralrimi | |
21 | ralnex | |
|
22 | 20 21 | sylib | |
23 | vex | |
|
24 | 23 | difexi | |
25 | zfreg | |
|
26 | 24 25 | mpan | |
27 | 26 | necon1bi | |
28 | 22 27 | syl | |
29 | ssdif0 | |
|
30 | 28 29 | sylibr | |
31 | 30 | adantlr | |
32 | simplr | |
|
33 | 31 32 | sseldd | |
34 | 33 | ex | |
35 | 34 | exlimiv | |
36 | 35 | com12 | |