Metamath Proof Explorer


Theorem setindtr

Description: Set induction for sets contained in a transitive set. If we are allowed to assume Infinity, then all sets have a transitive closure and this reduces to setind ; however, this version is useful without Infinity. (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion setindtr xxAxAyTryByBA

Proof

Step Hyp Ref Expression
1 nfv xTry
2 nfa1 xxxAxA
3 1 2 nfan xTryxxAxA
4 eldifn xyA¬xA
5 4 adantl TryxxAxAxyA¬xA
6 trss Tryxyxy
7 eldifi xyAxy
8 6 7 impel TryxyAxy
9 df-ss xyxy=x
10 8 9 sylib TryxyAxy=x
11 10 adantlr TryxxAxAxyAxy=x
12 11 sseq1d TryxxAxAxyAxyAxA
13 sp xxAxAxAxA
14 13 ad2antlr TryxxAxAxyAxAxA
15 12 14 sylbid TryxxAxAxyAxyAxA
16 5 15 mtod TryxxAxAxyA¬xyA
17 inssdif0 xyAxyA=
18 16 17 sylnib TryxxAxAxyA¬xyA=
19 18 ex TryxxAxAxyA¬xyA=
20 3 19 ralrimi TryxxAxAxyA¬xyA=
21 ralnex xyA¬xyA=¬xyAxyA=
22 20 21 sylib TryxxAxA¬xyAxyA=
23 vex yV
24 23 difexi yAV
25 zfreg yAVyAxyAxyA=
26 24 25 mpan yAxyAxyA=
27 26 necon1bi ¬xyAxyA=yA=
28 22 27 syl TryxxAxAyA=
29 ssdif0 yAyA=
30 28 29 sylibr TryxxAxAyA
31 30 adantlr TryByxxAxAyA
32 simplr TryByxxAxABy
33 31 32 sseldd TryByxxAxABA
34 33 ex TryByxxAxABA
35 34 exlimiv yTryByxxAxABA
36 35 com12 xxAxAyTryByBA