Metamath Proof Explorer


Theorem setsid

Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypothesis setsid.e E=SlotEndx
Assertion setsid WACVC=EWsSetEndxC

Proof

Step Hyp Ref Expression
1 setsid.e E=SlotEndx
2 setsval WACVWsSetEndxC=WVEndxEndxC
3 2 fveq2d WACVEWsSetEndxC=EWVEndxEndxC
4 resexg WAWVEndxV
5 4 adantr WACVWVEndxV
6 snex EndxCV
7 unexg WVEndxVEndxCVWVEndxEndxCV
8 5 6 7 sylancl WACVWVEndxEndxCV
9 1 8 strfvnd WACVEWVEndxEndxC=WVEndxEndxCEndx
10 fvex EndxV
11 10 snid EndxEndx
12 fvres EndxEndxWVEndxEndxCEndxEndx=WVEndxEndxCEndx
13 11 12 ax-mp WVEndxEndxCEndxEndx=WVEndxEndxCEndx
14 resres WVEndxEndx=WVEndxEndx
15 disjdifr VEndxEndx=
16 15 reseq2i WVEndxEndx=W
17 res0 W=
18 16 17 eqtri WVEndxEndx=
19 14 18 eqtri WVEndxEndx=
20 19 a1i WACVWVEndxEndx=
21 elex CVCV
22 21 adantl WACVCV
23 opelxpi EndxVCVEndxCV×V
24 10 22 23 sylancr WACVEndxCV×V
25 opex EndxCV
26 25 relsn RelEndxCEndxCV×V
27 24 26 sylibr WACVRelEndxC
28 dmsnopss domEndxCEndx
29 relssres RelEndxCdomEndxCEndxEndxCEndx=EndxC
30 27 28 29 sylancl WACVEndxCEndx=EndxC
31 20 30 uneq12d WACVWVEndxEndxEndxCEndx=EndxC
32 resundir WVEndxEndxCEndx=WVEndxEndxEndxCEndx
33 un0 EndxC=EndxC
34 uncom EndxC=EndxC
35 33 34 eqtr3i EndxC=EndxC
36 31 32 35 3eqtr4g WACVWVEndxEndxCEndx=EndxC
37 36 fveq1d WACVWVEndxEndxCEndxEndx=EndxCEndx
38 13 37 eqtr3id WACVWVEndxEndxCEndx=EndxCEndx
39 10 a1i WACVEndxV
40 fvsng EndxVCVEndxCEndx=C
41 39 40 sylancom WACVEndxCEndx=C
42 38 41 eqtrd WACVWVEndxEndxCEndx=C
43 3 9 42 3eqtrrd WACVC=EWsSetEndxC