Metamath Proof Explorer


Theorem shscli

Description: Closure of subspace sum. (Contributed by NM, 15-Oct-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses shscl.1 AS
shscl.2 BS
Assertion shscli A+BS

Proof

Step Hyp Ref Expression
1 shscl.1 AS
2 shscl.2 BS
3 shsss ASBSA+B
4 1 2 3 mp2an A+B
5 sh0 AS0A
6 1 5 ax-mp 0A
7 sh0 BS0B
8 2 7 ax-mp 0B
9 ax-hv0cl 0
10 9 hvaddlidi 0+0=0
11 10 eqcomi 0=0+0
12 rspceov 0A0B0=0+0xAyB0=x+y
13 6 8 11 12 mp3an xAyB0=x+y
14 1 2 shseli 0A+BxAyB0=x+y
15 13 14 mpbir 0A+B
16 4 15 pm3.2i A+B0A+B
17 1 2 shseli xA+BzAwBx=z+w
18 1 2 shseli yA+BvAuBy=v+u
19 shaddcl ASzAvAz+vA
20 1 19 mp3an1 zAvAz+vA
21 20 ad2ant2r zAwBvAuBz+vA
22 21 ad2ant2r zAwBx=z+wvAuBy=v+uz+vA
23 shaddcl BSwBuBw+uB
24 2 23 mp3an1 wBuBw+uB
25 24 ad2ant2l zAwBvAuBw+uB
26 25 ad2ant2r zAwBx=z+wvAuBy=v+uw+uB
27 oveq12 x=z+wy=v+ux+y=z+w+v+u
28 27 ad2ant2l zAwBx=z+wvAuBy=v+ux+y=z+w+v+u
29 1 sheli zAz
30 1 sheli vAv
31 29 30 anim12i zAvAzv
32 2 sheli wBw
33 2 sheli uBu
34 32 33 anim12i wBuBwu
35 hvadd4 zvwuz+v+w+u=z+w+v+u
36 31 34 35 syl2an zAvAwBuBz+v+w+u=z+w+v+u
37 36 an4s zAwBvAuBz+v+w+u=z+w+v+u
38 37 ad2ant2r zAwBx=z+wvAuBy=v+uz+v+w+u=z+w+v+u
39 28 38 eqtr4d zAwBx=z+wvAuBy=v+ux+y=z+v+w+u
40 rspceov z+vAw+uBx+y=z+v+w+ufAgBx+y=f+g
41 22 26 39 40 syl3anc zAwBx=z+wvAuBy=v+ufAgBx+y=f+g
42 41 ancoms vAuBy=v+uzAwBx=z+wfAgBx+y=f+g
43 42 exp43 vAuBy=v+uzAwBx=z+wfAgBx+y=f+g
44 43 rexlimivv vAuBy=v+uzAwBx=z+wfAgBx+y=f+g
45 44 com3l zAwBx=z+wvAuBy=v+ufAgBx+y=f+g
46 45 rexlimivv zAwBx=z+wvAuBy=v+ufAgBx+y=f+g
47 46 imp zAwBx=z+wvAuBy=v+ufAgBx+y=f+g
48 17 18 47 syl2anb xA+ByA+BfAgBx+y=f+g
49 1 2 shseli x+yA+BfAgBx+y=f+g
50 48 49 sylibr xA+ByA+Bx+yA+B
51 50 rgen2 xA+ByA+Bx+yA+B
52 shmulcl ASxvAxvA
53 1 52 mp3an1 xvAxvA
54 53 adantrr xvAuBy=v+uxvA
55 shmulcl BSxuBxuB
56 2 55 mp3an1 xuBxuB
57 56 adantrr xuBy=v+uxuB
58 57 adantrl xvAuBy=v+uxuB
59 oveq2 y=v+uxy=xv+u
60 59 adantl uBy=v+uxy=xv+u
61 60 ad2antll xvAuBy=v+uxy=xv+u
62 id xx
63 ax-hvdistr1 xvuxv+u=xv+xu
64 62 30 33 63 syl3an xvAuBxv+u=xv+xu
65 64 3expb xvAuBxv+u=xv+xu
66 65 adantrrr xvAuBy=v+uxv+u=xv+xu
67 61 66 eqtrd xvAuBy=v+uxy=xv+xu
68 rspceov xvAxuBxy=xv+xufAgBxy=f+g
69 54 58 67 68 syl3anc xvAuBy=v+ufAgBxy=f+g
70 69 ancoms vAuBy=v+uxfAgBxy=f+g
71 70 exp42 vAuBy=v+uxfAgBxy=f+g
72 71 imp vAuBy=v+uxfAgBxy=f+g
73 72 rexlimivv vAuBy=v+uxfAgBxy=f+g
74 73 impcom xvAuBy=v+ufAgBxy=f+g
75 18 74 sylan2b xyA+BfAgBxy=f+g
76 1 2 shseli xyA+BfAgBxy=f+g
77 75 76 sylibr xyA+BxyA+B
78 77 rgen2 xyA+BxyA+B
79 51 78 pm3.2i xA+ByA+Bx+yA+BxyA+BxyA+B
80 issh2 A+BSA+B0A+BxA+ByA+Bx+yA+BxyA+BxyA+B
81 16 79 80 mpbir2an A+BS