Metamath Proof Explorer


Theorem sibfima

Description: Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018)

Ref Expression
Hypotheses sitgval.b โŠขB=BaseW
sitgval.j โŠขJ=TopOpenโกW
sitgval.s โŠขS=๐›”โกJ
sitgval.0 โŠข0ห™=0W
sitgval.x โŠขยทห™=โ‹…W
sitgval.h โŠขH=โ„HomโกScalarโกW
sitgval.1 โŠขฯ†โ†’WโˆˆV
sitgval.2 โŠขฯ†โ†’Mโˆˆโ‹ƒranโกmeasures
sibfmbl.1 โŠขฯ†โ†’Fโˆˆโ„‘MW
Assertion sibfima โŠขฯ†โˆงAโˆˆranโกFโˆ–0ห™โ†’MโกF-1Aโˆˆ0+โˆž

Proof

Step Hyp Ref Expression
1 sitgval.b โŠขB=BaseW
2 sitgval.j โŠขJ=TopOpenโกW
3 sitgval.s โŠขS=๐›”โกJ
4 sitgval.0 โŠข0ห™=0W
5 sitgval.x โŠขยทห™=โ‹…W
6 sitgval.h โŠขH=โ„HomโกScalarโกW
7 sitgval.1 โŠขฯ†โ†’WโˆˆV
8 sitgval.2 โŠขฯ†โ†’Mโˆˆโ‹ƒranโกmeasures
9 sibfmbl.1 โŠขฯ†โ†’Fโˆˆโ„‘MW
10 1 2 3 4 5 6 7 8 issibf โŠขฯ†โ†’Fโˆˆโ„‘MWโ†”FโˆˆdomโกMMblFnฮผSโˆงranโกFโˆˆFinโˆงโˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž
11 9 10 mpbid โŠขฯ†โ†’FโˆˆdomโกMMblFnฮผSโˆงranโกFโˆˆFinโˆงโˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž
12 11 simp3d โŠขฯ†โ†’โˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž
13 sneq โŠขx=Aโ†’x=A
14 13 imaeq2d โŠขx=Aโ†’F-1x=F-1A
15 14 fveq2d โŠขx=Aโ†’MโกF-1x=MโกF-1A
16 15 eleq1d โŠขx=Aโ†’MโกF-1xโˆˆ0+โˆžโ†”MโกF-1Aโˆˆ0+โˆž
17 16 rspcv โŠขAโˆˆranโกFโˆ–0ห™โ†’โˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆžโ†’MโกF-1Aโˆˆ0+โˆž
18 12 17 mpan9 โŠขฯ†โˆงAโˆˆranโกFโˆ–0ห™โ†’MโกF-1Aโˆˆ0+โˆž