| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltlpss |
|
| 2 |
|
fveq2 |
|
| 3 |
|
simpr |
|
| 4 |
|
lruneq |
|
| 5 |
4
|
adantr |
|
| 6 |
5 3
|
difeq12d |
|
| 7 |
|
difundir |
|
| 8 |
|
difid |
|
| 9 |
8
|
uneq1i |
|
| 10 |
|
0un |
|
| 11 |
7 9 10
|
3eqtri |
|
| 12 |
|
incom |
|
| 13 |
|
lltropt |
|
| 14 |
|
ssltdisj |
|
| 15 |
13 14
|
mp1i |
|
| 16 |
12 15
|
eqtr3id |
|
| 17 |
|
disjdif2 |
|
| 18 |
16 17
|
syl |
|
| 19 |
11 18
|
eqtrid |
|
| 20 |
|
difundir |
|
| 21 |
|
difid |
|
| 22 |
21
|
uneq1i |
|
| 23 |
|
0un |
|
| 24 |
20 22 23
|
3eqtri |
|
| 25 |
|
incom |
|
| 26 |
|
lltropt |
|
| 27 |
|
ssltdisj |
|
| 28 |
26 27
|
mp1i |
|
| 29 |
25 28
|
eqtr3id |
|
| 30 |
|
disjdif2 |
|
| 31 |
29 30
|
syl |
|
| 32 |
24 31
|
eqtrid |
|
| 33 |
6 19 32
|
3eqtr3d |
|
| 34 |
3 33
|
oveq12d |
|
| 35 |
|
simpl1 |
|
| 36 |
|
lrcut |
|
| 37 |
35 36
|
syl |
|
| 38 |
|
simpl2 |
|
| 39 |
|
lrcut |
|
| 40 |
38 39
|
syl |
|
| 41 |
34 37 40
|
3eqtr3d |
|
| 42 |
41
|
ex |
|
| 43 |
2 42
|
impbid2 |
|
| 44 |
1 43
|
orbi12d |
|
| 45 |
|
sleloe |
|
| 46 |
45
|
3adant3 |
|
| 47 |
|
sspss |
|
| 48 |
47
|
a1i |
|
| 49 |
44 46 48
|
3bitr4d |
|