| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltlpss |  | 
						
							| 2 |  | fveq2 |  | 
						
							| 3 |  | simpr |  | 
						
							| 4 |  | lruneq |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 | 5 3 | difeq12d |  | 
						
							| 7 |  | difundir |  | 
						
							| 8 |  | difid |  | 
						
							| 9 | 8 | uneq1i |  | 
						
							| 10 |  | 0un |  | 
						
							| 11 | 7 9 10 | 3eqtri |  | 
						
							| 12 |  | incom |  | 
						
							| 13 |  | lltropt |  | 
						
							| 14 |  | ssltdisj |  | 
						
							| 15 | 13 14 | mp1i |  | 
						
							| 16 | 12 15 | eqtr3id |  | 
						
							| 17 |  | disjdif2 |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 | 11 18 | eqtrid |  | 
						
							| 20 |  | difundir |  | 
						
							| 21 |  | difid |  | 
						
							| 22 | 21 | uneq1i |  | 
						
							| 23 |  | 0un |  | 
						
							| 24 | 20 22 23 | 3eqtri |  | 
						
							| 25 |  | incom |  | 
						
							| 26 |  | lltropt |  | 
						
							| 27 |  | ssltdisj |  | 
						
							| 28 | 26 27 | mp1i |  | 
						
							| 29 | 25 28 | eqtr3id |  | 
						
							| 30 |  | disjdif2 |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 | 24 31 | eqtrid |  | 
						
							| 33 | 6 19 32 | 3eqtr3d |  | 
						
							| 34 | 3 33 | oveq12d |  | 
						
							| 35 |  | simpl1 |  | 
						
							| 36 |  | lrcut |  | 
						
							| 37 | 35 36 | syl |  | 
						
							| 38 |  | simpl2 |  | 
						
							| 39 |  | lrcut |  | 
						
							| 40 | 38 39 | syl |  | 
						
							| 41 | 34 37 40 | 3eqtr3d |  | 
						
							| 42 | 41 | ex |  | 
						
							| 43 | 2 42 | impbid2 |  | 
						
							| 44 | 1 43 | orbi12d |  | 
						
							| 45 |  | sleloe |  | 
						
							| 46 | 45 | 3adant3 |  | 
						
							| 47 |  | sspss |  | 
						
							| 48 | 47 | a1i |  | 
						
							| 49 | 44 46 48 | 3bitr4d |  |