Description: The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. (Contributed by AV, 14-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smadiadet.a | |
|
smadiadet.b | |
||
smadiadet.r | |
||
smadiadet.d | |
||
smadiadet.h | |
||
smadiadetg.x | |
||
Assertion | smadiadetg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smadiadet.a | |
|
2 | smadiadet.b | |
|
3 | smadiadet.r | |
|
4 | smadiadet.d | |
|
5 | smadiadet.h | |
|
6 | smadiadetg.x | |
|
7 | eqid | |
|
8 | 3 | a1i | |
9 | crngring | |
|
10 | 3 9 | mp1i | |
11 | simp1 | |
|
12 | simp3 | |
|
13 | simp2 | |
|
14 | 1 2 | marrepcl | |
15 | 10 11 12 13 13 14 | syl32anc | |
16 | 1 2 | minmar1cl | |
17 | 10 11 13 13 16 | syl22anc | |
18 | 1 2 3 4 5 6 | smadiadetglem2 | |
19 | 1 2 3 4 5 | smadiadetglem1 | |
20 | 4 1 2 7 6 8 15 12 17 13 18 19 | mdetrsca | |
21 | 1 2 3 4 5 | smadiadet | |
22 | 21 | 3adant3 | |
23 | 22 | eqcomd | |
24 | 23 | oveq2d | |
25 | 20 24 | eqtrd | |