Metamath Proof Explorer


Theorem smfpimgtmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimgtmpt.x xφ
smfpimgtmpt.s φSSAlg
smfpimgtmpt.b φxABV
smfpimgtmpt.f φxABSMblFnS
smfpimgtmpt.l φL
Assertion smfpimgtmpt φxA|L<BS𝑡A

Proof

Step Hyp Ref Expression
1 smfpimgtmpt.x xφ
2 smfpimgtmpt.s φSSAlg
3 smfpimgtmpt.b φxABV
4 smfpimgtmpt.f φxABSMblFnS
5 smfpimgtmpt.l φL
6 nfmpt1 _xxAB
7 eqid domxAB=domxAB
8 6 2 4 7 5 smfpreimagtf φxdomxAB|L<xABxS𝑡domxAB
9 eqid xAB=xAB
10 1 9 3 dmmptdf φdomxAB=A
11 6 nfdm _xdomxAB
12 nfcv _xA
13 11 12 rabeqf domxAB=AxdomxAB|L<xABx=xA|L<xABx
14 10 13 syl φxdomxAB|L<xABx=xA|L<xABx
15 9 a1i φxAB=xAB
16 15 3 fvmpt2d φxAxABx=B
17 16 breq2d φxAL<xABxL<B
18 1 17 rabbida φxA|L<xABx=xA|L<B
19 eqidd φxA|L<B=xA|L<B
20 14 18 19 3eqtrrd φxA|L<B=xdomxAB|L<xABx
21 10 eqcomd φA=domxAB
22 21 oveq2d φS𝑡A=S𝑡domxAB
23 20 22 eleq12d φxA|L<BS𝑡AxdomxAB|L<xABxS𝑡domxAB
24 8 23 mpbird φxA|L<BS𝑡A