Metamath Proof Explorer


Theorem smocdmdom

Description: The codomain of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013)

Ref Expression
Assertion smocdmdom F:ABSmoFOrdBAB

Proof

Step Hyp Ref Expression
1 simpl1 F:ABSmoFOrdBxAF:AB
2 1 ffnd F:ABSmoFOrdBxAFFnA
3 simpl2 F:ABSmoFOrdBxASmoF
4 smodm2 FFnASmoFOrdA
5 2 3 4 syl2anc F:ABSmoFOrdBxAOrdA
6 ordelord OrdAxAOrdx
7 5 6 sylancom F:ABSmoFOrdBxAOrdx
8 simpl3 F:ABSmoFOrdBxAOrdB
9 simpr F:ABSmoFOrdBxAxA
10 smogt FFnASmoFxAxFx
11 2 3 9 10 syl3anc F:ABSmoFOrdBxAxFx
12 ffvelcdm F:ABxAFxB
13 12 3ad2antl1 F:ABSmoFOrdBxAFxB
14 ordtr2 OrdxOrdBxFxFxBxB
15 14 imp OrdxOrdBxFxFxBxB
16 7 8 11 13 15 syl22anc F:ABSmoFOrdBxAxB
17 16 ex F:ABSmoFOrdBxAxB
18 17 ssrdv F:ABSmoFOrdBAB