Metamath Proof Explorer


Theorem smores

Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011) (Proof shortened by Mario Carneiro, 5-Dec-2016)

Ref Expression
Assertion smores SmoABdomASmoAB

Proof

Step Hyp Ref Expression
1 funres FunAFunAB
2 funfn FunAAFndomA
3 funfn FunABABFndomAB
4 1 2 3 3imtr3i AFndomAABFndomAB
5 resss ABA
6 5 rnssi ranABranA
7 sstr ranABranAranAOnranABOn
8 6 7 mpan ranAOnranABOn
9 4 8 anim12i AFndomAranAOnABFndomABranABOn
10 df-f A:domAOnAFndomAranAOn
11 df-f AB:domABOnABFndomABranABOn
12 9 10 11 3imtr4i A:domAOnAB:domABOn
13 12 a1i BdomAA:domAOnAB:domABOn
14 ordelord OrddomABdomAOrdB
15 14 expcom BdomAOrddomAOrdB
16 ordin OrdBOrddomAOrdBdomA
17 16 ex OrdBOrddomAOrdBdomA
18 15 17 syli BdomAOrddomAOrdBdomA
19 dmres domAB=BdomA
20 ordeq domAB=BdomAOrddomABOrdBdomA
21 19 20 ax-mp OrddomABOrdBdomA
22 18 21 syl6ibr BdomAOrddomAOrddomAB
23 dmss ABAdomABdomA
24 5 23 ax-mp domABdomA
25 ssralv domABdomAxdomAydomAxyAxAyxdomABydomAxyAxAy
26 24 25 ax-mp xdomAydomAxyAxAyxdomABydomAxyAxAy
27 ssralv domABdomAydomAxyAxAyydomABxyAxAy
28 24 27 ax-mp ydomAxyAxAyydomABxyAxAy
29 28 ralimi xdomABydomAxyAxAyxdomABydomABxyAxAy
30 26 29 syl xdomAydomAxyAxAyxdomABydomABxyAxAy
31 inss1 BdomAB
32 19 31 eqsstri domABB
33 simpl xdomABydomABxdomAB
34 32 33 sselid xdomABydomABxB
35 34 fvresd xdomABydomABABx=Ax
36 simpr xdomABydomABydomAB
37 32 36 sselid xdomABydomAByB
38 37 fvresd xdomABydomABABy=Ay
39 35 38 eleq12d xdomABydomABABxAByAxAy
40 39 imbi2d xdomABydomABxyABxAByxyAxAy
41 40 ralbidva xdomABydomABxyABxAByydomABxyAxAy
42 41 ralbiia xdomABydomABxyABxAByxdomABydomABxyAxAy
43 30 42 sylibr xdomAydomAxyAxAyxdomABydomABxyABxABy
44 43 a1i BdomAxdomAydomAxyAxAyxdomABydomABxyABxABy
45 13 22 44 3anim123d BdomAA:domAOnOrddomAxdomAydomAxyAxAyAB:domABOnOrddomABxdomABydomABxyABxABy
46 df-smo SmoAA:domAOnOrddomAxdomAydomAxyAxAy
47 df-smo SmoABAB:domABOnOrddomABxdomABydomABxyABxABy
48 45 46 47 3imtr4g BdomASmoASmoAB
49 48 impcom SmoABdomASmoAB