Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011) (Proof shortened by Mario Carneiro, 5-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | smores | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres | |
|
2 | funfn | |
|
3 | funfn | |
|
4 | 1 2 3 | 3imtr3i | |
5 | resss | |
|
6 | 5 | rnssi | |
7 | sstr | |
|
8 | 6 7 | mpan | |
9 | 4 8 | anim12i | |
10 | df-f | |
|
11 | df-f | |
|
12 | 9 10 11 | 3imtr4i | |
13 | 12 | a1i | |
14 | ordelord | |
|
15 | 14 | expcom | |
16 | ordin | |
|
17 | 16 | ex | |
18 | 15 17 | syli | |
19 | dmres | |
|
20 | ordeq | |
|
21 | 19 20 | ax-mp | |
22 | 18 21 | syl6ibr | |
23 | dmss | |
|
24 | 5 23 | ax-mp | |
25 | ssralv | |
|
26 | 24 25 | ax-mp | |
27 | ssralv | |
|
28 | 24 27 | ax-mp | |
29 | 28 | ralimi | |
30 | 26 29 | syl | |
31 | inss1 | |
|
32 | 19 31 | eqsstri | |
33 | simpl | |
|
34 | 32 33 | sselid | |
35 | 34 | fvresd | |
36 | simpr | |
|
37 | 32 36 | sselid | |
38 | 37 | fvresd | |
39 | 35 38 | eleq12d | |
40 | 39 | imbi2d | |
41 | 40 | ralbidva | |
42 | 41 | ralbiia | |
43 | 30 42 | sylibr | |
44 | 43 | a1i | |
45 | 13 22 44 | 3anim123d | |
46 | df-smo | |
|
47 | df-smo | |
|
48 | 45 46 47 | 3imtr4g | |
49 | 48 | impcom | |