Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | smores2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsmo2 | |
|
2 | 1 | simp1bi | |
3 | 2 | ffund | |
4 | funres | |
|
5 | 4 | funfnd | |
6 | 3 5 | syl | |
7 | df-ima | |
|
8 | imassrn | |
|
9 | 7 8 | eqsstrri | |
10 | 2 | frnd | |
11 | 9 10 | sstrid | |
12 | df-f | |
|
13 | 6 11 12 | sylanbrc | |
14 | 13 | adantr | |
15 | smodm | |
|
16 | ordin | |
|
17 | dmres | |
|
18 | ordeq | |
|
19 | 17 18 | ax-mp | |
20 | 16 19 | sylibr | |
21 | 20 | ancoms | |
22 | 15 21 | sylan | |
23 | resss | |
|
24 | dmss | |
|
25 | 23 24 | ax-mp | |
26 | 1 | simp3bi | |
27 | ssralv | |
|
28 | 25 26 27 | mpsyl | |
29 | 28 | adantr | |
30 | ordtr1 | |
|
31 | 22 30 | syl | |
32 | inss1 | |
|
33 | 17 32 | eqsstri | |
34 | 33 | sseli | |
35 | 31 34 | syl6 | |
36 | 35 | expcomd | |
37 | 36 | imp31 | |
38 | 37 | fvresd | |
39 | 33 | sseli | |
40 | 39 | fvresd | |
41 | 40 | ad2antlr | |
42 | 38 41 | eleq12d | |
43 | 42 | ralbidva | |
44 | 43 | ralbidva | |
45 | 29 44 | mpbird | |
46 | dfsmo2 | |
|
47 | 14 22 45 46 | syl3anbrc | |